A Lego vehicle crossing a gap between two benches.

Making A LEGO Vehicle Which Can Cross Large Gaps

Here is a hacker showing off their engineering chops. This video shows successive design iterations for a LEGO vehicle which can cross increasingly large gaps.

At the time of writing this video from [Brick Experiment Channel] has been seen more than 110,000,000 times, which is… rather a lot. We guess with a view count like that there is a fairly good chance that many of our readers have already seen this video, but this is the sort of video one could happily watch twice.

Continue reading “Making A LEGO Vehicle Which Can Cross Large Gaps”

Building An Automatic Wire Stripper And Cutter

Stripping and cutting wires can be a tedious and repetitive part of your project. To save time in this regard, [Red] built an automatic stripper and cutter to do the tiring work for him.

An ESP32 runs the show in this build. Via a set of A4988 stepper motor drivers, it controls two NEMA 17 stepper motors which control the motion of the cutting and stripping blades via threaded rods. A third stepper controls a 3D printer extruder to move wires through the device. There’s a rotary encoder with a button for controlling the device, with cutting and stripping settings shown on a small OLED display. It graphically represents the wire for stripping, so you can select the length of the wire and how much insulation you want stripped off each end. You merely need select the measurements on the display, press a button, and the machine strips and cuts the wire for you. The wires end up in a tidy little 3D-printed bin for collection.

The build should be a big time saver for [Red], who will no longer have to manually cut and strip wires for future builds. We’ve featured some other neat wire stripper builds before, too. Video after the break.

Continue reading “Building An Automatic Wire Stripper And Cutter”

Building An Eight Channel Active Mixer

There are plenty of audio mixers on the market, and the vast majority all look the same. If you wanted something different, or just a nice learning experience, you could craft your own instead. That’s precisely what [Something Physical] did. 

The build was inspired by an earlier 3-channel mixer designed by [Moritz Klein]. This project stretches to eight channels, which is nice, because somehow it feels right that a mixer’s total channels always land on a multiple of four. As you might expect, the internals are fairly straightforward—it’s just about lacing together all the separate op-amp gain stages, pots, and jacks, as well as a power LED so you can tell when it’s switched on. It’s all wrapped up in a slant-faced wooden box with an aluminum face plate and Dymo labels. Old-school, functional, and fit for purpose.

It’s a simple build, but a satisfying one; there’s something beautiful about recording on audio gear you’ve hewn yourself. Once you’ve built your mixer, you might like to experiment in the weird world of no-input mixing. Video after the break.

Continue reading “Building An Eight Channel Active Mixer”

Open Source Watch Movement Really Ticks All The Boxes

When you think of open-source hardware, you probably think of electronics and maker tools– RepRap, Arduino, Adafruit, et cetera. Yet open source is an ethos and license, and is in no way limited to electronics. The openmovement foundation is a case in point– a watch case, to be specific. The “movement” in Openmovement is a fully open-source and fully mechanical watch movement.

Openmovement has already released STEP files of OM10 the first movement developed by the group. (You do need to sign up to download, however.) They say the design is meant to be highly serviceable and modular, with a robust construction suited for schools and new watchmakers. The movement uses a “Swiss pallets escapement” that runs at 3.5 Hz / 25,200 vph. (We think that’s an odd translation of lever escapement, but if you’re a watchmaker let us know in the comments.)  An OM20 is apparently in the works, as well, but it looks like only OM10 has been built from what we can see.

If you don’t have the equipment to finely machine brass from the STEP files, Openmovement is running a crowdfunding campaign to produce kits of the OM10, which you can still get in on until the seventh of June.

If you’re wondering what it takes to make a mechanical watch from scratch, we covered that last year. Spoiler: it doesn’t look easy. Just assembling the tiny parts of an OM10 kit would seem daunting to most of us. That might be why most of the watches we’ve covered over the years weren’t mechanical, but at least they tend to be open source, too.

3D Printed Tank Has A Cannon To Boot

Few of us will ever find ourselves piloting a full-sized military tank. Instead, you might like to make do with the RC variety. [TRDB] has whipped up one of their own design which features a small little pellet cannon to boot.

The tank is assembled from 3D printed components — with PETG filament being used for most of the body and moving parts, while the grippy parts of the treads are printed in TPU. The tank’s gearboxes consist of printed herringbone gears, and are driven by a pair of powerful 775 brushed DC motors, which are cooled by small 40 mm PC case fans. A rather unique touch are the custom linear actuators, used to adjust the tank’s ride height and angle relative to the ground. The small cannon on top is a flywheel blaster that fires small plastic pellets loaded from a simple drum magazine. Running the show is an ESP32, which responds to commands from [TRDB]’s own custom RC controller built using the same microcontroller.

As far as DIY RC tanks go, this is a very complete build. We’ve seen some other great work in this space, like this giant human-sized version that’s big enough to ride in.

Continue reading “3D Printed Tank Has A Cannon To Boot”

Supercon 2024: How To Track Down Radio Transmissions

You turn the dial on your radio, and hear a powerful source of interference crackle in over the baseline noise. You’re interested as to where it might be coming from. You’re receiving it well, and the signal strength is strong, but is that because it’s close or just particularly powerful? What could it be? How would you even go about tracking it down?

When it comes to hunting down radio transmissions, Justin McAllister and Nick Foster have a great deal of experience in this regard. They came down to the 2024 Hackaday Superconference to show us how it’s done.

Continue reading “Supercon 2024: How To Track Down Radio Transmissions”

ManiPylator focusing its laser pointer at a page.

Simulation And Motion Planning For 6DOF Robotic Arm

[Leo Goldstien] recently got in touch to let us know about a fascinating update he posted on the Hackaday.io page for ManiPylator — his 3D printed Six degrees of freedom, or 6DOF robotic arm.

This latest installment gives us a glimpse at what’s involved for command and control of such a device, as what goes into simulation and testing. Much of the requisite mathematics is introduced, along with a long list of links to further reading. The whole solution is based entirely on free and open source (FOSS) software, in fact a giant stack of such software including planning and simulation software on top of glue like MQTT message queues.

The practical exercise for this installment was to have the arm trace out the shape of a heart, given as a mathematical equation expressed in Python code, and it fared quite well. Measurements were taken! Science was done!

We last brought you word about this project in October of 2024. Since then, the project name has changed from “ManiPilator” to “ManiPylator”. Originally the name was a reference to the Raspberry Pi, but now the focus is on the Python programming language. But all the bot’s best friends just call him “Manny”.

If you want to get started with your own 6DOF robotic arm, [Leo] has traced out a path for you to follow. We’d love to hear about what you come up with!

Continue reading “Simulation And Motion Planning For 6DOF Robotic Arm”