Zen Flute Is A Teensy Powered Mouth Theremin

An intriguing mouth-played instrument emerged—and won—at the 2023 Guthman Musical Instrument Contest hosted by Georgia Tech. [Keith Baxter] took notice and reproduced the idea for others to explore. The result is the Zen Flute Mouth Theremin, a hybrid of acoustics, electronics, and expressive performance.

At its core lies a forced Helmholtz resonator, a feedback system built with a simple microphone and speaker setup. The resonator itself? The user’s mouth. The resulting pitch, shaped by subtle jaw and tongue movements, is detected and used to drive a MIDI controller feeding an external synthesizer.

Like a trombone or classic electromagnetic theremin, the Zen Flute doesn’t rely on discrete notes. Instead, the pitch is bent manually to the desired frequency. That’s great for expression, but traditional MIDI quantisation can map those “in-between” notes to unexpected semitones. The solution? MIDI Polyphonic Expression (MPE). This newer MIDI extension allows smooth pitch transitions and nuanced control, giving the Zen Flute its expressive character without the hiccups.

Physically, it’s an elegant build. A flat speaker and microphone sit side-by-side at the mouth end, acoustically isolated with a custom silicone insert. This assembly connects to a length of clear PVC pipe, flared slightly to resemble a wind instrument. Inside, a custom PCB (schematic here) hosts a mic preamp, an audio power amp, and a Teensy 4.1. The Teensy handles everything: sampling the mic input, generating a 90-degree phase shift, and feeding it back to the speaker to maintain resonance. It also detects the resonant frequency and translates it to MPE over USB.  A push-button triggers note onset, while a joystick adjusts timbre and selects modes. Different instrument profiles can be pre-programmed and toggled with a joystick click, each mapped to separate MIDI channels.

Mouth-controlled instruments are a fascinating corner of experimental interfaces. They remind us of this Hackaday Prize entry from 2018, this wind-MIDI hybrid controller, and, of course, a classic final project from the Cornell ECE4760 course, a four-voice theremin controlled by IR sensors.

Continue reading “Zen Flute Is A Teensy Powered Mouth Theremin”

Fancy Adding A Transputer Or Two To Your Atari ST?

Has anybody heard of the ATW800 transputer workstation? The one that used a modified Atari ST motherboard as a glorified I/O controller for a T-series transputer?  No, we hadn’t either, but transputer superfan [Axel Muhr] has created the ATW800/2, an Atari Transputer card, the way it was meant to be.

The transputer was a neat idea when it was conceived in the 1980s. It was designed specifically for parallel and scientific computing and featured an innovative architecture and dedicated high-speed serial chip-to-chip networking. However, the development of more modern buses and general-purpose CPUs quickly made it a footnote in history. During the same period, a neat transputer-based parallel processing computer was created, which leveraged the Atari ST purely for its I/O. This was the curious ATW800 transputer workstation. That flopped as well, but [Axel] was enough of a fan to take that concept and run with it. This time, rather than using the Atari as a dumb I/O controller, the card is explicitly designed for the Mega-ST expansion bus. A second variant of the ATW800/2 is designed for the Atari VME bus used by the STe and TT models—yes, VME on an Atari—it was a thing.

Continue reading “Fancy Adding A Transputer Or Two To Your Atari ST?”

Simulating High-Side Bootstrap Circuits With LTSpice

LTSpice is a tool that every electronics nerd should have at least a basic knowledge of. Those of us who work professionally in the analog and power worlds rely heavily on the validity of our simulations. It’s one of the basic skills taught at college, and essential to truly understand how a circuit behaves. [Mano] has quite a collection of videos about the tool, and here is a great video explanation of how a bootstrap circuit works, enabling a high-side driver to work in the context of driving a simple buck converter. However, before understanding what a bootstrap is, we need to talk a little theory.

Bootstrap circuits are very common when NMOS (or NPN) devices are used on the high side of a switching circuit, such as a half-bridge (and by extension, a full bridge) used to drive a motor or pump current into a power supply.

A simple half-bridge driving illustrates the high-side NMOS driving problem.

From a simplistic viewpoint, due to the apparent symmetry, you’d want to have an NMOS device at the bottom and expect a PMOS device to be at the top. However, PMOS and PNP devices are weaker, rarer and more expensive than NMOS, which is all down to the device physics; simply put, the hole mobility in silicon and most other semiconductors is much lower than the electron mobility, which results in much less current. Hence, NMOS and NPN are predominant in power circuits.

As some will be aware, to drive a high-side switching transistor, such as an NPN bipolar or an NMOS device, the source end will not be at ground, but will be tied to the switching node, which for a power supply is the output voltage. You need a way to drive the gate voltage in excess of the source or emitter end by at least the threshold voltage. This is necessary to get the device to fully turn on, to give the lowest resistance, and to cause the least power dissipation. But how do you get from the logic-level PWM control waveform to what the gate needs to switch correctly?

The answer is to use a so-called bootstrap capacitor. The idea is simple enough: during one half of the driving waveform, the capacitor is charged to some fixed voltage with respect to ground, since one end of the capacitor will be grounded periodically. On the other half cycle, the previously grounded end, jumps up to the output voltage (the source end of the high side transistor) which boosts the other side of the capacitor in excess of the source (because it got charged already) providing a temporary high-voltage floating supply than can be used to drive the high-side gate, and reliably switch on the transistor. [Mano] explains it much better in a practical scenario in the video below, but now you get the why and how of the technique.

We see videos about LTSpice quite a bit, like this excellent YouTube resource by [FesZ] for starters.

Continue reading “Simulating High-Side Bootstrap Circuits With LTSpice”

Rebooting An 1973 Art Installation Running On A Nova

Electronics-based art installations are often fleeting and specific things that only a select few people who are in the right place or time get to experience before they are lost to the ravages of ‘progress.’ So it’s wonderful to find a dedicated son who has recreated his father’s 1973 art installation, showing it to the world in a miniature form. The network-iv-rebooted project is a recreation of an installation once housed within a departure lounge in terminal C of Seattle-Tacoma airport.

You can do a lot with a ‘pi and a fistful of Teensies!

The original unit comprises an array of 1024 GE R6A neon lamps, controlled from a Data General Nova 1210 minicomputer. A bank of three analog synthesizers also drove into no fewer than 32 resonators. An 8×8 array of input switches was the only user-facing input. The switches were mounted to a floor-standing pedestal facing the display.

For the re-creation, the neon lamps were replaced with 16×16 WS2811 LED modules, driven via a Teensy 4.0 using the OctoWS2811 library. The display Teensy is controlled from a Raspberry Pi 4, hooked up as a virtual serial device over USB. A second Teensy (you can’t have too many Teensies!) is responsible for scanning a miniature 8×8 push button array as well as running a simulation of the original sound synthesis setup. Audio is pushed out of the Teensy using a PT8211 I2S audio DAC, before driving a final audio power amp.

Continue reading “Rebooting An 1973 Art Installation Running On A Nova”

Learn 15 Print-in-Place Mechanisms In 15 Minutes

3D printed in-place mechanisms and flexures, such as living hinges, are really neat when you can get them to print correctly. But how do you actually do that? YouTuber [Slant 3D] is here with a helpful video demonstrating the different kinds of springs and hinges (Video, embedded below) that can be printed reliably, and discusses some common pitfalls and areas to concentrate upon.

Living hinges are everywhere and have been used at least as long as humans have been around. The principle is simple enough; join two sections to move with a thinned section of material that, in small sections, is flexible enough to distort a few times without breaking off. The key section is “a few times”, as all materials will eventually fail due to overworking. However, if this thing is just a cheap plastic case around a low-cost product, that may not be a huge concern. The video shows a few ways to extend flexibility, such as spreading the bending load across multiple flexure elements to reduce the wear of individual parts, but that comes at the cost of compactness.

Continue reading “Learn 15 Print-in-Place Mechanisms In 15 Minutes”

Some Useful Notes On The 6805-EC10 Addressable RGB LED

LEDs are getting smaller and smaller, and the newest generations of indexable RGB LEDs are even fiddlier to use than their already diminutive predecessors. [Alex Lorman] has written some notes about the minuscule SK6805-EC10 series of LEDs, which may be helpful to those wanting to learn how to deal with these in a more controlled manner.

Most hardware types will be very familiar with the 5050-sized devices, sold as Neopixels in some circles, which are so-named due to being physically 5.0 mm x 5.0 mm in the horizontal dimensions. Many LEDs are specified by this simple width by depth manner. As for addressable RGB LEDs (although not all addressable LEDs are RGB, there are many weird and wonderful combinations out there!) the next most common standard size down the scale is the 2020, also known as the ‘Dotstar.’ These are small enough to present a real soldering challenge, and getting a good placement result needs some real skills.

[Alex] wanted to use the even smaller EC10 or 1111 devices, which measure a staggering 1.1 mm x 1.1 mm! Adafruit’s product page mentions that these are not intended for hand soldering, but we bet you want to try! Anyway, [Alex] has created a KiCAD footprint and a handy test PCB for characterizing and getting used to handling these little suckers, which may help someone on their way. They note that hot air reflow soldering needs low temperature paste (this scribe recommends using MG Chemicals branded T3 Sn42Bi57Ag1 paste in this application) and a very low heat to avoid cracking the cases open. Also, a low air flow rate to prevent blowing them all over the desk would also be smart. Perhaps these are more suited to hot plate or a proper convection oven?

As a bonus, [Alex] has previously worked with the slightly larger SK6805-1515 device, with some good extra notes around an interesting nonlinearity effect and the required gamma correction to get good colour perception. We’ll leave that to you readers to dig into. Happy soldering!

We’ve not yet seen many projects using these 1111 LEDs, but here’s one we dug up using the larger 1515 unit.

The Strange Afterlife Of The Xbox Kinect

The tale of the Microsoft Xbox Kinect is one of those sad situations where a great product was used in an application that turned out to be a bit of a flop and was discontinued because of it, despite its usefulness in other areas. This article from the Guardian is a quick read on how this handy depth camera has found other uses in somewhat niche areas, with not a computer game in sight.

It’s rather obvious that a camera that can generate a 3D depth map, in parallel with a 2D reference image, could have many applications beyond gaming, especially in the hands of us hackers. Potential uses include autonomous roving robots, 3D scanning, and complex user interfaces—there are endless possibilities. Artists producing interactive art exhibits would sit firmly in that last category, with the Kinect used in countless installations worldwide.

Apparently, the Kinect also has quite the following in ghost-hunting circles, which as many a dubious TV show would demonstrate, seem almost entirely filmed under IR light conditions. The Kinect’s IR-based structured light system is well-suited for these environments. Since its processing core runs a machine learning application specifically trained to track human figures, it’s no surprise that the device can pick up those invisible, pesky spirits hiding in the noise. Anyway, all of these applications depend on the used-market supply of Kinect devices, over a decade old, that can be found online and in car boot sales, which means one day, the Kinect really will die off, only to be replaced with specialist devices that cost orders of magnitude more to acquire.

In the unlikely event you’ve not encountered non-gaming applications for the Kinect, here’s an old project to scan an entire room to get you started. Just to be perverse, here’s a gaming application that Microsoft didn’t think of, and to round out, the bad news that Microsoft has really has abandoned the product.