Laser-Cut Metal Endoskeleton Beefs Up 3D Prints

There are limits to what you can do with an FDM printer to make your parts stronger. It really comes down to adding more plastic, like increasing wall thickness or boosting up the infill percentage. Other than that, redesigning the part to put more material where the part is most likely to fail is about the only other thing you can do. Unless, of course, you have access to a fiber laser cutter that can make internal metal supports for your prints.

As [Paul] explains it, this project stemmed from an unfortunate episode where a printed monitor stand failed, sending the LCD panel to its doom. He had taken care to reinforce that part by filling it with fiberglass resin, but to no avail. Unwilling to risk a repeat with a new tablet holder, he decided to test several alternative methods for reinforcing parts. Using a 100 W fiber laser cutter, he cut different internal supports from 0.2 mm steel shim stock. In one case he simply sandwiched the support between two half-thickness brackets, while in another he embedded the steel right into the print. He also made two parts that were filled with epoxy resin, one with a steel support embedded and one without.

The test setup was very simple, just a crane scale to measure the force exerted by pulling down on the part with his foot; crude, but effective. Every reinforced part performed better than a plain printed part with no reinforcement, but the clear winner was the epoxy-filled part with a solid-metal insert. Honestly, we were surprised at how much benefit such a thin piece of metal offered, even when it was directly embedded into the print during a pause.

Not everyone has access to a fiber laser cutter, of course, so this method might not be for everyone. In that case, you might want to check out other ways to beef up your prints, including just splitting them in two.

Continue reading “Laser-Cut Metal Endoskeleton Beefs Up 3D Prints”

Mining And Refining: The Halogens

I was looking at the periodic table of the elements the other day, as one does, when my eye fell upon the right-hand side of the chart. Right next to the noble gases at the extreme edge of the table is a column of elements with similar and interesting properties: the halogens. Almost all of these reactive elements are pretty familiar, especially chlorine, which most of us eat by the gram every day in the form of table salt. As the neighborhoods of the periodic table go, Group 17 is pretty familiar territory.

But for some reason, one member of this group caught my attention: iodine. I realized I had no idea where we get iodine, which led to the realization that apart from chlorine, I really didn’t know where any of the halogens came from. And as usual, that meant I needed to dig in and learn a little bit about the mining and refining of the halogens. At least most of them; as interesting as they may be, we’ll be skipping the naturally occurring but rare and highly radioactive halogen astatine, as well as the synthetic halogen tennessine, which lives just below it in the group.

Continue reading “Mining And Refining: The Halogens”

Hackaday Links Column Banner

Hackaday Links: January 19, 2025

This week, we witnessed a couple of space oopsies as both Starship and New Glenn suffered in-flight mishaps on the same day. SpaceX’s Starship was the more spectacular, with the upper stage of the seventh test flight of the full stack experiencing a “rapid unscheduled disassembly” thanks to a fire developing in the aft section of the stage somewhere over the Turks and Caicos islands, about eight and a half minutes after takeoff from Boca Chica. The good news is that the RUD happened after first-stage separation, and that the Super Heavy booster was not only able to safely return to the pad but also made another successful “chopsticks” landing on the tower. Sorry, that’s just never going to get old.

On the Bezos side of the billionaire rocket club, the maiden flight of Blue Origin’s New Glenn ended with the opposite problem. The upper stage reached orbit, but the reusable booster didn’t make it back to the landing barge parked off the Bahamas. What exactly happened isn’t clear yet, but judging by the telemetry the booster was coming in mighty fast, which may indicate that the engines didn’t restart fully and the thing just broke up when it got into the denser part of the atmosphere.

Continue reading “Hackaday Links: January 19, 2025”

Motorized Coil Tunes Your Ham Antenna On A Budget

When it comes to amateur radio, one size definitely does not fit all. That’s especially true with antennas, which need to be just the right size for the band you’re working, lest Very Bad Things happen to your expensive radio. That presents a problem for the ham who wants the option to work whichever band is active, and doubly so if portable operation is desired.

Of course, there are commercial solutions to this problem, but they tend to be expensive. Luckily [Øystein (LB8IJ)] seems to have found a way around that with this low-cost homebrew motorized antenna coil, which is compatible with the Yaesu Automatic Tuning Antenna System. ATAS is supported by several Yaesu transceivers, including the FT-891 which [Øystein] favors for field operations. ATAS sends signals up the feedline to a compatible antenna, which then moves a wiper along a coil to change the electrical length of the antenna, allowing it to resonate on the radio’s current frequency.

The video below details [Øystein]’s implementation of an ATAS-compatible tuning coil, mainly focusing on the mechanical and electrical aspects of the coil itself, which takes up most of the room inside a 50-mm diameter PVC tube. The bore of the air-core coil has a channel that guides a wiper, which moves along the length of the coil thanks to a motor-driven lead screw. [Øystein] put a lot of work into the wiper, to make it both mechanically and electrically robust. He also provides limit switches to make sure the mechanism isn’t over-driven.

There’s not much detail yet on how the control signals are detected, but a future video on that subject is promised. We’re looking forward to that, but in the meantime, the second video below shows [Øystein] using the tuner in the field, with great results.

Continue reading “Motorized Coil Tunes Your Ham Antenna On A Budget”

A Field Expedient Welder Only MacGyver Could Love

If you needed to weld something in a pinch, what’s the minimum complement of equipment you could get away with? In [Professor Bardal]’s case, it’s a couple of motorcycle batteries and a roll of flux-core wire, and not much else.

We suspect this one is going to elicit quite a few comments, not least by the welding fans who no doubt will be triggered by just about everything in the video below, especially by characterizing this as MIG welding; it’s FCAW, or flux-core arc welding. But it bears some superficial similarities to MIG, at least insofar as there’s a consumable wire electrode through which a high-current DC supply flows, creating enough heat to melt it and the base metal. In this case, the current is provided by a pair of 12-volt motorcycle batteries hooked together in series. There’s also a torch of sorts — a short length of copper capillary tubing with a 1-mm inside diameter clamped in the jaws of a stick welder stinger, or a pair of locking pliers if you’re really in a pinch. The torch is connected to the negative terminal on the battery with a jumper cable, and the positive terminal is connected to the workpiece.

To create the weld, a piece of 0.8-mm flux-core welding wire is threaded through the capillary and into the joint, and fed by hand as it’s consumed. It’s awkward and awful, but it works. Of course, there’s no control over amperage as there would be with a legit welding machine, which would make it hard to adapt this method to different materials. Weld quality appears poor, too. But we suspect that if you were in a position to need a welder like this, you wouldn’t really care about any of that.

Fabricobbled welding rigs seem to be [Professor Bardal]’s thing — witness this much more professional MIG welder, complete with a baking soda and vinegar shielding gas generator.

Continue reading “A Field Expedient Welder Only MacGyver Could Love”

Hackaday Podcast Episode 304: Glitching The RP2350, Sim Sim Sim, And A Scrunchie Clock

It’s podcast time again, and this week Dan sat down with Elliot for a look back at all the cool hacks we’ve written about. We started off talking about Hackaday Europe, which is coming up in March — seems unlikely that it’s just around the corner, but there it is. There’s also good news: the Hack Chat is back, and we started things off with a bang as Eben Upton stopped by to talk all things Pi. Separately, we talked about fault injection attacks, including how to find the hidden cup of  0xC0FFEE in an RP2350.

We saw a very cool piece of LED jewelry that does a fluid simulation, a direct conversion radio that’s all laid out in front of you, and the scrunchiest mechanical digital clock you’ll ever see. We saw blinkenlights for blinkenlights’ sake, all the ways to put threads in your prints, and how to ditch to coax and wire up your antennas with Cat 6 cable. Plus, it’s an Al Williams twofer in the Can’t-Miss Articles, with a look back at life before GPS and how you can tune into digital ham radio, no radio required.

Download the zero-calorie MP3.

Continue reading “Hackaday Podcast Episode 304: Glitching The RP2350, Sim Sim Sim, And A Scrunchie Clock”

Simple Hardware Store Hack Keeps Your PCBs Right Where You Want Them

Sometimes it’s the simplest hacks that make the biggest impact.

Take these DIY magnetic PCB vises for example. Sure, you can go out and buy purpose-built tools, but [Dylan Radcliffe] just made a trip to the hardware store for some nuts and bolts. He chose 3/8″-16 bolts, which would probably be around M10 for the rest of the world. The head of each bolt is ground flat so a ceramic disc magnet can be attached to it with CA glue, while the head of the bolt gets a plastic washer glued to it. Another plastic washer gets glued to a nut, which when threaded onto the bolt provides the light clamping force needed to hold a PCB. Make four of those and stick them to a steel plate with the magnets, and you can stop chasing your boards around the bench with a soldering iron.

As much as we like this idea — and we do; we’re heading to Home Depot to buy the needed parts this very evening — we can think of a few useful modifications. With a long bolt and two nuts rather than one, you could make a set of vises that are easily adjustable along the Z-axis. This could prove useful to those of us working under a microscope. Also, rather than making the bolts the magnetic part we bet you could lay down a flexible magnetic sheet, the kind you can feed into a printer to roll your own fridge magnets. We suspect that would hold the bolts firmly enough for most work while still allowing easy repositioning. We’d also favor flange nuts over plain hex nuts, to give a larger clamping area. We’d still include the plastic washers, though, or possibly switch to rubber ones.

There’s more than one way to skin this cat, of course, especially if you’ve got a Harbor Freight nearby and a well-stocked Lego bin.