Tiny arcade machines on a tabletop

Tiny PONG, Big Ambitions: World’s Smallest Arcade

London, Ontario college student [Victoria Korhonen] has captured the attention of tech enthusiasts and miniaturization lovers with her creation of what might be the world’s smallest arcade machine. Standing just 64 mm tall, 26 mm wide, and 30 mm deep, this machine is a scaled-down marvel playing the classic Atari game PONG. While the record isn’t yet official—it takes about three months for Guinness to certify—it’s clear [Korhonen]’s creation embodies ingenuity and dedication.

[Korhonen], an electromechanical engineering student, took six months to design and build this micro arcade. Inspired by records within reach, she aimed to outdo the previous tiniest arcade machine by shaving off just a few millimeters During the project she faced repeated failures, but viewed each iteration as a step towards success. Her miniature machine isn’t just a gimmick; it’s fully functional, with every component—from paddle mechanics to coding—developed from scratch.

[Korhonen] is already eyeing new projects, including creating the smallest humanoid robot. She also plans to integrate her electromechanical expertise into her family’s escape room business. Her journey aligns with other hobbyist projects pushing the limits of miniaturization, such as this credit card-sized Tetris clone or [Aliaksei Zholner]’s paper micro engines.

[Wills] and his purple DIY sorting hat

From Felt To Fate: Building Your Own Sorting Hat

Ever wondered how it feels to have the Sorting Hat decide your fate? [Will Dana] wanted to find out, so he conjured a bit of Hogwarts magic, and crafted a fully animatronic Sorting Hat from scratch. In the video below, he covers every step of bringing this magical purple marvel to life—from rapid joystick movements to the electronics behind it all.

The heart of the project is two 9g servos—one actuates the mouth, and the other controls the eyebrows—powered by an ESP32 microcontroller. Communication between two ESP32 boards ensures smooth operation via the ESP-NOW protocol, making this a wireless wonder. The design process involved using mechanical advantage to solve jittery servo movements, a trick that will resonate with anyone who’s fought with uncooperative motors.

If animatronics or themed projects excite you, Hackaday has covered similar builds, from a DIY BB-8 droid to a robot fox.

Continue reading “From Felt To Fate: Building Your Own Sorting Hat”

Optical illusion gingerbread house from an odd perspective

An Engineer’s Perspective On Baking Gingerbread Houses

If you’ve ever wanted to merge the worlds of holiday cheer and clever geometry, [Kris Wilk]’s gingerbread house hack is your ultimate inspiration. Shared in a mesmerising video, [Wilk] showcases his 2024 entry for his neighborhood’s gingerbread house contest. Designed in FreeCAD and baked to perfection, this is no ordinary holiday treat. His pièce de résistance was a brilliant trompe l’oeil effect, visible only from one carefully calculated angle. Skip to the last twenty seconds of the video to wrap your head around how it actually looks.

[Wilk] used FreeCAD’s hidden true perspective projection function—a rarity in CAD software. This feature allowed him to calculate the perfect forced perspective, essential for crafting the optical illusion. The supporting structures were printed on a Prusa MK4, while the gingerbread itself was baked at home. Precision photography captured the final reveal, adding a professional touch to this homemade masterpiece. [Wilk]’s meticulous process highlights how accessible tools and a sprinkle of curiosity can push creative boundaries.

For those itching to experiment with optical illusions, this bakery battle is only the beginning. Why not build a similar one inside out? Or construct a gingerbread man in the same way? Fire up the oven, bend your mind, and challenge your CAD skills!

Continue reading “An Engineer’s Perspective On Baking Gingerbread Houses”

3D scanned image of LEGO sheep

Do 3D Printers Dream Of LEGO Sheep?

Imagine the power to clone your favorite LEGO piece—not just any piece, but let’s say, one that costs €50 second-hand. [Balazs] from RacingBrick posed this exact question: can a 3D scanner recreate LEGO pieces at home? Armed with Creality’s CR-Scan Otter, he set out to duplicate a humble DUPLO sheep and, of course, tackle the holy grail of LEGO collectibles: the rare LEGO goat.

The CR-Scan Otter is a neat gadget for hobbyists, capable of capturing objects as small as a LEGO piece. While the scanner proved adept with larger, blocky pieces, reflective LEGO plastic posed challenges, requiring multiple scans for detailed accuracy. With clever use of 3D printed tracking points, even the elusive goat came to life—albeit with imperfections. The process highlighted both the potential and the limitations of replicating tiny, complex shapes. From multi-colored DUPLO sheep to metallic green dinosaur jaws, [Balazs]’s experiments show how scanners can fuel customization for non-commercial purposes.

For those itching to enhance or replace their builds, this project is inspiring but practical advice remains: cloning LEGO pieces with a scanner is fun but far from plug-and-play. Check out [Balazs]’s exploration below for the full geeky details and inspiration.

Continue reading “Do 3D Printers Dream Of LEGO Sheep?”

Render of life-size robot rat animatronic on blue plane

Robot Rodents: How AI Learned To Squeak And Play

In an astonishing blend of robotics and nature, SMEO—a robot rat designed by researchers in China and Germany — is fooling real rats into treating it like one of their own.

What sets SMEO apart is its rat-like adaptability. Equipped with a flexible spine, realistic forelimbs, and AI-driven behavior patterns, it doesn’t just mimic a rat — it learns and evolves through interaction. Researchers used video data to train SMEO to “think” like a rat, convincing its living counterparts to play, cower, or even engage in social nuzzling. This degree of mimicry could make SMEO a valuable tool for studying animal behavior ethically, minimizing stress on live animals by replacing some real-world interactions.

For builders and robotics enthusiasts, SMEO is a reminder that robotics can push boundaries while fostering a more compassionate future. Many have reservations about keeping intelligent creatures in confined cages or using them in experiments, so imagine applying this tech to non-invasive studies or even wildlife conservation. In a world where robotic dogs, bees, and even schools of fish have come to life, this animatronic rat sounds like an addition worth further exploring. SMEO’s development could, ironically, pave the way for reducing reliance on animal testing.

Continue reading “Robot Rodents: How AI Learned To Squeak And Play”

Front view of blue bicycle with Raspberry Pi webserver

Pedaling Your Mobile Web Server Across The Globe

We tinkerers often have ideas we know are crazy, and we make them up in the most bizarre places, too. For example, just imagine hosting a website while pedaling across the world—who would (not) want that? Meet [Jelle Reith], a tinkerer on an epic cycling adventure, whose bicycle doubles as a mobile web server. [Jelle]’s project, jelle.bike, will from the 6th of December on showcase what he’s seeing in real time, powered by ingenuity and his hub dynamo. If you read this far, you’ll probably guess: this hack is done by a Dutchman. You couldn’t be more right.

At the heart of [Jelle]’s setup is a Raspberry Pi 4 in a watertight enclosure. The tiny powerhouse runs off energy generated by a Forumslader V3, a clever AC-to-DC converter optimized for bike dynamos. The Pi gets internet access via [Jelle]’s phone hotspot, but hosting a site over cellular networks isn’t as simple as it sounds. With no static IP available, [Jelle] routes web traffic through a VPS using an SSH tunnel. This crafty solution—expanded upon by Jeff Geerling—ensures seamless access to the site, even overcoming IPv6 quirks.

The system’s efficiency and modularity exemplify maker spirit: harnessing everyday tools to achieve the extraordinary. For more details, including a parts list and schematics, check out [Jelle]’s Hackaday.io project page.

ATTiny NFC Thermometer keychain with keys

Tiny NFC-Powered Keychain Thermometer

What if your keychain could tell you the temperature, all while staying battery-free? That’s the essence of this innovative keychain ‘NFC_temp’ by [bjorn]. This nifty gadget harnesses energy from an NFC field—like the one created by your smartphone—to power itself just long enough to take a precise temperature reading. Using components like an ATTiny1626 microcontroller, a TMP117 thermometer, and an RF430CL330H NFC IC, NFC_temp cleverly stores harvested power in a capacitor to function autonomously.

The most impressive part? This palm-sized device (18×40 mm) uses a self-designed 13.56 MHz antenna to draw energy from NFC readers. The temperature is then displayed on the reader, with an impressive accuracy of ±0.1 °C. Creator [bjorn] even shared challenges, like switching from an analog sensor due to voltage instability, which ultimately led to his choice of the TMP117. Android phones work best with the tag, while iOS devices require a bit more angling for reliable detection.

Projects like NFC_temp underscore the creativity within open source. It’s a brilliant nod to the future of passive, wireless, energy-efficient designs. Since many of us will all be spending a lot of time around the Christmas tree this month, why not fit it in a bauble?