Ask Hackaday: How On Earth Can A 2004 MP3 Player Read An SDXC Card?

What were you doing in 2004? Can you even remember 2004? Maybe it’s like the old joke about the 1960s, if you can remember it, you weren’t really there, man. Cast your mind back, [Lance Armstrong] was winning the Tour de France, and SpaceShipOne made it into space.

[Gregg Eshelman], wrote to us to say that in 2004 he bought an MP3 player. Ask your parents about them, they were what hipsters used before they had cassette tapes: portable music players that everyone thought were really cool back then, onto which music didn’t come from the Internet but had to be manually loaded from a computer.

Jokes about slightly outdated consumer electronics aside, [Gregg]’s player, a GPX MW3836, turned out to be a really good buy. Not only does it still work, it packs an unexpected bonus, it reads 64Gb SD cards when they are formatted as FAT32. This might not seem like a big deal at a cursory glance, but it’s worth considering a little SD card history.

Back when the GPX was made, the maximum capacity of an SD card was 2Gb, a figure that must have seemed huge when the standard was created, but by the middle of the last decade was starting to look a little cramped. The GPX player is designed to only read these original 2Gb cards. In the years since then there have been a couple of revisions to the standard, SDHC, and SDXC, which have given us the huge cards we are used to today. Many other devices from the 2Gb SD era, made before SDHC and SDXC existed, cannot read the modern cards, yet [Gregg]’s GPX can.

Hackaday’s readership constantly amaze us with the sheer breadth of their knowledge and expertise, so we are sure that among you reading this piece will be experts on SD card standards who can shed some light on this mystery. Why can a player designed for the original SD card standard read the much newer cards when other contemporary ones can not? [Gregg] would love to know, and now our curiosity has been whetted, so would we.

If you think you’ve heard [Gregg]’s name before, it might be for his expertise in resin casting automotive parts.

SD card image: Andreas Frank (CC BY 2.5).

Erika Earl: Manufacturing Hacks

Many of us will have casually eyed up the idea of turning a project into a product. Perhaps we’ve considered making a kit from it, or even taking it further into manufacture. But building a single device on the bench is an extremely different matter from having a run of the same devices built by someone else, and in doing so there are a host of pitfalls waiting for the unwary.

[Erika Earl] is the Director of Hardware Engineering at Slate Digital, and has a lengthy background in the professional audio industry. Her job involves working with her team to bring high-quality electronic products to market that do not have the vast production runs of a major consumer electronic brand, so she has a lot of experience when it comes to turning a hacked-together prototype into a polished final device. Her talk at the 2017 Hackaday Superconference: Manufacturing Hacks: Mistakes Will Move You Forward examined what it takes to go through this process, and brought her special insights on the matter to a Hackaday audience.

She started her talk by looking at design for manufacture, how while coming up with prototypes is easy, the most successful products are those that have had the ability to manufacture as a consideration from the start of the design process. Starting with the selection of components, carrying through to the prototype stage, and through design reviews before manufacture, everything must be seen through the lens of anyone, anywhere, being able to build it.

At the selection of components for the Bill of Materials level, she made the point that high quality certified components can be the key to a product’s success or failure, contributing not only to reliability but also to it achieving certification. In her particular field, she often deals with components that can be close enough to the cutting edge to be prototypes in their own right. She mentioned the certification angle in particular in the context of exporting a product, as in that case there is often a need to be able to prove that all components used to meet a particular specification.

When it comes to the prototype stage, she made the point that documentation is the key. Coming back to the earlier sentence about anyone anywhere being able to build the product, that can only be achieved if all possible stages of manufacture are defined. She mentioned an example of a product in which the prototypes had had PCB fixing screws tightened by hand; when the factory started using electric screwdrivers the result was damaged PCBs and broken tracks.

The design review should look at everything learned through the prototype stage, and examine everything supplied to the manufacturer to allow them to complete their work. She describes finding support documentation containing a poorly hand-drawn schematic, and seeing an electronic assembly in which a piece of gum had been used to secure something. She also made the point that another function at this point is to ensure that the product is affordable to produce. If any parts or procedures are likely to cost too much, they should be re-examined.

After the talk itself as described above there is a Q&A session where she reveals how persistent and cheeky she sometimes has to be to secure sample parts as a small-scale manufacturer and delivers some insights into persuading a manufacturer to produce prototypes at a sensible price. And yes, like most people who have tried their hand at this, she’s had the nightmare of entire runs of prototype boards returned with a component fitted incorrectly.

The talk is embedded in its entirety below the break, and represents an extremely interesting watch for anyone starting on the road to manufacturing, particularly in the electronic world. If this describes you, take a look!

Continue reading “Erika Earl: Manufacturing Hacks”

The Worst Piece Of Test Equipment You’ve Got To Try Hacking

A brand new meter in its blister pack
A brand new meter in its blister pack

I have a fascination with the various online vendors of electronics and other manufactured goods from China. Here are listed the latest wonders from Shenzhen or wherever, which you can have for a surprisingly reasonable price, with the mild inconvenience of a three week wait for the postage.

A particular pastime of mine is to look for the bottom end of the market. Once I’ve picked up the items I came to order I’ll trawl around with the search with low price first and see what can be had for a few dollars. Yes, I take a delight in finding absolute trash, because just sometimes that way you can find a diamond in the rough.

So when I was shopping for a multimeter recently I took a quick look to see what the cheapest model from that particular supplier was. For somewhere around £2.50 or just over $3, I could have a little pocket analogue multimeter, the kind of “My first multimeter” that one might have found in the 1980s. They weren’t too bad, I thought, and ordered one for less than a pint of beer in a British pub.

Continue reading “The Worst Piece Of Test Equipment You’ve Got To Try Hacking”

Introducing The Mobility Unlimited Challenge

If you take a walk across the centre of your city, you will find it to be a straightforward experience with few inconveniences. The occasional hold-up at a pedestrian crossing perhaps, or maybe a crowd of people in a busy shopping area. If however you take the same walk in the company of a wheelchair user you are likely to encounter an entirely different experience. The streets become a nightmare of obstacles to avoid and inaccessible areas requiring a detour, and suddenly what had been a pleasurable experience becomes a significant effort. Despite building and planning code updates to improve the situation, and millions of dollars invested in ramps, lifts, and other improvements, there remain so many problems to be addressed. Meanwhile legislators and the general public imagine that something has been done, the accessibility box has been ticked, and they can move on to the next thing that captures their attention.

The paralympian athlete [Tatyana McFadden] is an ambassador for the Toyota Mobility Foundation’s Mobility Unlimited Challenge, a global competition with the aim of improving mobility for people with disabilities. She’s written a piece introducing the challenge from her informed point of view as a wheelchair user, and makes the point that the basic design of a chair has not significantly changed since the 1930s. Her sentence: “There may be more hype around Bitcoin, but innovators could have far more impact if they turned their attention to how they can make the freedom to move available to all.” is one to make those of us with an interest in technology stop and think. To introduce the challenge they’ve released a glossy video, and we’ve placed it below the break.

As part of this year’s Hackaday Prize, we had an Assistive Technologies section that attracted some fantastic entries. That demonstrates that our community has plenty of people with the required skills, experience, and ideas to make a difference, and we hope that some of them might be among the entries for the Mobility Unlimited competition. If it excites your interest, we’d like to urge you to give it a second look.

A word of warning though – take care to avoid the Engineer Saviour Trap.

Continue reading “Introducing The Mobility Unlimited Challenge”

Protect Your TS100 Soldering Iron

The TS100 is a compact temperature-controlled soldering iron that’s long on features without too eye-watering a price. One thing it lacks as shipped though is anything to protect it from the thumps and bumps of everyday life in a toolbox, save for its elegant cardboard-and-foam retail box which requires iron and element/bit to be separated.

[Jeremy S. Cook] has a TS100, and decided to do something about it with a bit of work that may be quite simple but should be something that all TS100 owners take a look at. He made a very tough carrying container for it from a length of PVC pipe lined with the foam from the iron’s retail package. His short video which we’ve placed below the break takes us through the build, which bits of the packaging foam to cut, and uses a pair of PVC end caps to terminate the container. It’s not high-tech by any means, but enough of you will have TS100 irons to appreciate it.

You can read our review of the TS100 if you are interested, or you can marvel at the additions people have done to its software. Tetris, for example, or a working digital oscilloscope. Meanwhile [Jeremy] is an old friend of Hackaday, whose many projects include this recent unholy hybrid of fidget spinner and multirotor.

Continue reading “Protect Your TS100 Soldering Iron”

Is Your Wireless Charger Working?

It’s that time of year at which the Christmas lights are coming out of storage, isn’t it. Some modern seasonal rituals: untangling half a mile of fairy lights, and replacing a pile of CR2032 cells in LED candles.

[RobBest] had a solution to the latter, owning a set of nifty rechargeable LED candles that came with their own wireless charger. Sadly the charger wasn’t working quite as intended, as the indicator light to show when it had finished its cycle was always on. How could he indicate that the induction system was in operation?

His answer was to take a non-functioning candle and strip it down to expose its induction pick-up coil. He could have simply hooked it up to an LED for a quick result, but since the device in question was a candle it made sense to give it a candle effect. A PIC microcontroller was therefore pressed into service to drive the LED with its PWM output, giving a pleasing flickering effect.

You don’t have to own a set of electronic candles to have a go at wireless charging. Instead you could try a trip to IKEA.

Retrotechtacular: How To Repair A Steam Locomotive

Steam locomotives, as a technological product of the 19th century, are not what you would imagine as fragile machines. The engineering involved is not inconsequential, there is little about them that is in any way flimsy. They need to be made in this way, because the huge energy transfer required to move a typical train would destroy lesser construction. It would however be foolish to imagine a locomotive as indestructible, placing that kind of constant strain on even the heaviest of engineering is likely to cause wear, or component failure.

A typical railway company in the steam age would therefore maintain a repair facility in which locomotives would be overhauled on a regular basis, and we are lucky enough to have a 1930s film of one for you today courtesy of the British London Midland and Scottish railway. In it we follow one locomotive from first inspection through complete dismantling, lifting of the frame from the wheels, detaching of the boiler, inspection of parts, replacement, and repair, to final reassembly.

We see steps in detail such as the set-up of a steam engine’s valve gear, and it is impressed upon us how much the factory runs on a tight time schedule. Each activity fits within its own time window, and like a modern car factory all the parts are brought to the locomotive at their allotted times. When the completed locomotive is ready to leave the factory it is taken to the paint shop to emerge almost as a new machine, ready for what seems like a short service life for a locomotive, a mere 130 thousand miles.

The video, which we’ve placed below the break, is a fascinating glimpse into the world of a steam locomotive servicing facility. Most Hackaday readers will never strip down a locomotive, but that does not stop many of them from having some interest in the process. Indeed, keen viewers may wish to compare this film with “A Study in Steel“, another film from the LMS railway showing the construction of a locomotive.

LMS Jubilee class number 5605, “Cyprus”, the featured locomotive in this film, was built in 1935, and eventually scrapped in 1964 as part of the phasing out of steam traction on British railways.

Continue reading “Retrotechtacular: How To Repair A Steam Locomotive”