Hackaday Prize Entry: Project Man-Cam

With cameras, robotics, VR-headsets, and wireless broadband becoming commodities, the ultimate, mobile telepresence system – “Surrogates” if you will – is just one footstep away. And this technology may one day solve a very severe problem for many disabled people: Mobility. [chris jones] sees great potential in remote experiences for disabled people who happen to not be able to just walk outside. His Hackaday Prize Entry Project Man-Cam, a clever implementation of “the second self”, is already indistinguishable from real humans.

Instead of relying on Boston Dynamic’s wonky hydraulics or buzzing FPV drones, [chris] figured that he could just strap a pan and tiltable camera to a real person’s chest or – for his prototyping setup shown above – onto a utility cart. This Man-Cam-Unit (MCU) then captures the live-experience and sends it back home for the disabled person to enjoy through a VR headset in real time. A text-based chat would allow the communication between the borrowed body’s owner and the borrower while movements of the head are mapped onto the pan and tilt mechanism of the camera.

Right now, [chris] is still working on getting everything just right, and even if telepresence robots are already there, it’s charming to see how available technology lets one borrow the abilities of the other.

The HackadayPrize2016 is Sponsored by:

There’s A Pi In Mike’s Fridge

How often have you stood in the supermarket wondering about the inventory level in the fridge at home? [Mike] asked himself this question one time too often and so he decided to install a webcam in his fridge along with a Raspberry Pi and a light sensor to take a picture every time the fridge is opened — uploading it to a webserver for easy remote access.

Continue reading “There’s A Pi In Mike’s Fridge”

Hackaday Prize Entry: Automatic Digital Microscope

Ziehl-Neelsen Sputum Smear Microscopy (ZN) is one of most common methods for diagnosing Tuberculosis. On the equipment side, it requires not much more than an optical microscope, although it still needs a trained professional to look through the glass, identify and count the number of bacteria in a sample. To provide reliable and effective Tuberculosis diagnostic to regions, where both equipment and trained personnel is in short supply, [Rodrigo Loza] and [khalilnallar] are developing an automated digital microscope based on computer vision and machine learning, their entry for the Hackaday Prize.

automated_microscope_detection_1They started out gathering images of Tuberculosis bacteria from the internet and experimented with color threshold algorithms to detect dyed bacteria, as well as algorithms for counting individual and clusters of bacteria. This process alone can, according to the team, take a trained professional 30 minutes or more. A graphical interface highlights identified bacteria and reads the bacteria count.

[Rodrigo Loza] and [khalilnallar] are testing their device at the Dr. Roberto Galindo Teran hospital in Cobija, Bolivia. However, getting access to a lab environment is one thing, and being given access to a steady supply of fresh M. Tuberculosis samples is another. Unable to obtain samples, which they need to test their algorithms on live subjects, they turned to another front of their project: The hardware. In several iterations, they developed a low-cost, 3D-printable kit, which transforms a laboratory-grade optical microscope into an embedded CNC-controlled microscopy platform. Their kit comprises three stepper-motor-based axis for the X, Y and Z direction, as well as a webcam mount. An Intel Edison and a custom, Arduino compatible shield control the system to achieve features such as homing procedures, autofocus and bacteria detection.

The team is currently in the process of refining their bacteria detection pipeline, exploring the feasibility of semi-automated detection methods, machine learning and neural networks for classification of bacteria within the hardware constraints. The video below shows their latest update on the Z-axis of their microscope.

Continue reading “Hackaday Prize Entry: Automatic Digital Microscope”

Fluke 12E+ Multimeter Hacking Hertz So Good

It kind of hurts watching somebody torturing a brand new Fluke multimeter with a soldering iron, even if it’s for the sake of science. In order to find out if his Fluke 12E+ multimeter, a feature rich device with a price point of $75 that has been bought from one of the usual sources, is actually a genuine Fluke, [AvE] did exactly that – and discovered some extra features.

fluke_12E_CDuring a teardown of the multimeter, which involved comparing the melting point of the meter’s rubber case with other Fluke meters, [Ave] did finally make the case for the authenticity of the meter. However, after [AvE] put his genuine purchase back together, the dial was misaligned, and it took another disassembly to fix the issue. Luckily, [AvE] cultivates an attentive audience, and some commenters noticed that there were some hidden button pads on the PCB. They also spotted a little “C”, which lit up on the LCD for a short moment during the misalignment issue.

The comments led to [AvE] disassembling the meter a third time to see if any hidden features could be unlocked. And yes, they can. In addition to the dial position for temperature measurement, [AvE] found that one of the hidden button contacts would enable frequency and duty cycle measurement. Well, that was just too easy, so [AvE] went on checking if the hidden features had received their EOL calibration by hooking the meter up to a waveform generator. Apparently, it reads the set frequency to the last digit.

The 12E+ is kind of a new species of Fluke multimeter: On the one side, it has most of the functionality you would normally expect from a “multi”-multimeter – such as measuring both AC and DC voltage, current, capacitance and resistance – and on the other side it costs less than a hundred dollars. This is made possible by the magic of international marketing, and Fluke seems to distribute this crippleware product exclusively in the Chinese market. Therefore, you can’t buy it in the US or Europe, at least not easily. A close relative of the 12E+ which should be a bit easier to obtain is the Fluke 15B+; the meter we saw earlier today when [Sprite_TM] hacked it to share measurements via WiFi. The 15B+ seems to be identical to the 12E+ in appearance and features, although it’s unknown if the two are hackable in the same ways.

https://www.youtube.com/watch?v=FUmbsBYVTQ0

Thanks to [jacubillo] for the tip!

Artificial Muscles To Bring Relief To Robotic Tenseness

Custom, robotic prosthesis are on the rise. In numerous projects, hackers and makers have taken on the challenge. From Enabling The Future, Open Hand Project, OpenBionics to the myriad prosthesis projects on Hackaday.io. Yet, the mechatronics that power most of them are still from the last century. At the end of the day, you can only fit so many miniature motors and gears into a plastic hand, and only so many hydraulics fit onto an arm or leg before it becomes a slow, heavy brick – more hindering than helpful. If only we had a few extra of these light, fast and powerful actuators that help us make it through the day. If only we had artificial muscles.

Continue reading “Artificial Muscles To Bring Relief To Robotic Tenseness”

FR4 Machine Shield Is A CNC Milling Machine From FR4 PCB

The people behind the PocketNC heard you like CNC PCB mills, so they milled you a PCB mill out of PCB. They announced their surprising new open source hardware product, a pocket sized 3-axis CNC machine entirely made out of FR4 PCB material, aptly named “FR4 Machine Shield”, at this year’s Bay Area Maker Faire.

UPDATE: The FR4 Machine Shield is now on Kickstarter

fr4_thumbWe know the concept from quadcopters, little robots, and generally things that are small enough to make use of their PCBs as a structural component. But an entire CNC machine, soldered together from a few dozen PCBs certainly takes it to the next level.

There is no doubt that 2mm thick fiber reinforced epoxy can be surprisingly rigid, although the Achilles heel of this method might be the solder joints. However, it looks like all load bearing, mechanical connections of the machine are supported by tightly interlocking “dovetail” finger-joints, which may help protecting all the solder connections from the strain hardening effects of continuous stress and spindle vibrations.

As you might expect, most of the wiring is embedded into the FR4 frame construction, and to squeeze the maximum value out of the PCB material, the motor driver boards interface via card edge connectors with the (currently Arduino based) controller board. In addition to the milling head, which features a brushless DC motor and a tool coupler, the team wants to develop heads for circuit printing, microscopy, pneumatic pick and place, hot air reflow, and 3D printing.

With all those cost-driven design choices, from the one-step manufacturing process of the frame and wiring to the dismissal of screws and nuts from the frame assembly, the “FR4 Machine Shield” could indeed become one of the cheapest CNC machine kits on the market. The team targets an introduction price of $400 during a Kickstarter campaign in June 2016. Can they deliver? [Gerrit] checked Pocket NC out at the Faire and ended up raving about how they run their business.

Enjoy their teaser video below!

Continue reading “FR4 Machine Shield Is A CNC Milling Machine From FR4 PCB”

Transistor Logic Clock Has 777 Transistors

Sometimes, the parts list says it all. 777 transistors, 1223 resistors, 136 LEDs, 455 crimp connectors, 41 protoboards and 500 grams of solder. That’s what went into this transistor logic clock build.

While additional diodes and capacitors were tolerated in this project, a consequent implementation of a discrete transistor logic clock, of course, does not contain a quarz oscillator. Instead, it extracts its clock signal from the mains frequency in its power supply. Because mains frequency is slow, it can be stepped down to a clock-applicable 1 Hz by a simple counter unit which already spreads its discrete transistors across 4 protoboards.

Continue reading “Transistor Logic Clock Has 777 Transistors”