A hand holds a LEGO replica of a Polaroid camera. The back of the "camera" has been removed to show the sereies of Technic pieces inside that allow the camera shutter to work.

How A LEGO Set Is Born

LEGOs are the first window into making something in your head become real for many makers. The Verge dug into how a LEGO set itself goes from idea to the shelves.

While most sets come from the minds of LEGO designers, since 2008, fans can submit their own sets to LEGO Ideas for the chance to become a real product. In this case, we follow the journey of [Marc Corfmat]’s Polaroid OneStep Camera from his initial attempts at LEGO stardom with his brother [Nick] to the current set that took off.

While the initial idea and build are the seed for a new set, once the project is in the hands of LEGO, designers meticulously make revision after revision to ensure the set is enjoyable to build and any moving parts continue to function for thousands of cycles. This is all weighed against the total cost of the BOM as well as any licensing required for intellectual property. One particularly interesting part of the article is how designers at LEGO are afforded a certain number of “frames” for custom bricks which leads to some interesting hacks and collaboration as all good constraints do.

For more LEGO hacks, checkout LEGO’s long lost cousin, testing LEGO-compatible axle materials, or these giant LEGO-like pieces.

Recycling Batteries With Bacteria

Vehicle battery recycling is going to be a big deal with all the electric cars hitting the roads. What if you could do it more effectively with the power of microbes? (via Electrek)

“Li-ion” vehicle batteries can be any of a number of different chemistries, with more complex cathode makeups, like NCM (LiNixMnyCo1-x-yO2), being understandably more complex to separate into their original constituents. Researchers and companies in the industry are hoping to find economically-viable ways to get these metals back for both the environmental and economic benefits a closed loop system could provide.

Researchers in the UK developed a method using two species of bacteria to precipitate Ni, Mn, and Co from the liquid leached from cathodes. Li remained in the liquid where it could be processed separately like that obtained in Li brine. Mn was precipitated first by S. oneidensis MR-1, and a following step removed Ni and Co with D. alaskensis G20. The researchers report that Ni and Co show promise for further separation via biological methods, but more research is required for this step.

If you’re looking for some more interesting ways bacteria can be harnessed for the energy system, checkout this microbial fuel cell, another using soil, and an enzyme derived from bacteria that can pull electricity from thin air.

A white cargo van drives over a black asphalt road. An "x-ray" illustration shows the inductive coils inside the road as it drives over them.

Charging While Driving Now Possible In Michigan

Heavy vehicles like semi trucks pose a bigger challenge in electrifying the transportation fleet than smaller, more aerodynamic passenger cars. Michigan now has the first public in-road charging system in the United States to help alleviate this concern. [via Electrek]

Electreon, a company already active in Europe, won the contract to provide for the inductive coil-based charging system at the new Michigan Central Station research campus. Initial runs will be with a Ford E-Transit for testing, but there are plans to actually allow public use along the one mile (1.6 km) route in the near future.

Vehicles using the system need a special receiver, so we hope we’ll be seeing an open standard develop instead of having to have a different receiver for each road you drive on. This seems like it would be a more onerous swap than having to have three different toll road transponders. Unfortunately, the page about wireless standards on the Electreon website currently 404s, but CharIN, the standards body behind the Combined Charging Standard (CCS) did just launch a task force for wireless power delivery in September.

If you’re curious about other efforts at on-road charging, check out this slot car system in Sweden or another using pantographs.

 

An illustration of a powerplant, solar panel, and two wind turbines is in the bottom left across from an image of three cartoon people holding up a giant battery above their heads. Along the top of the image are the words, "Emergency Battery Network Toolkit." Below in a white bubble on the yellow background, it says, "How to share energy resources with your community in times of need." In the space between the people and the power plant, it says, "A Partnership of Shareable and People Power Battery Collective."

Sneakernet Power Transmission

Power outages in the face of natural disasters or more mundane grid failures can range from a mild inconvenience to a matter of life or death if you depend on electrical medical equipment. [Shareable] and [People Power Battery Collective] have partnered to develop a toolkit for communities looking to share power with each other in these situations.

Battery backup power isn’t exactly a new concept, so the real meat of this guide is how to build a network in your community so these relatively simple devices can be deployed effectively in the event of an emergency. We know that you can already handle your own backup power needs, but it pays to be a good neighbor, especially when those neighbors are deciding what to do when you’re releasing the factory-sealed smoke from your latest build on the community sidewalk.

For those who aren’t as technically-inclined as you, dear reader, there is also a handy Battery Basics (PDF) guide to help in selecting a battery backup solution. It is somewhat simplified, but it covers what most people would need to know. A note on fire safety regarding Li-ion batteries would probably be warranted in the Battery Basics document to balance the information on the risks of topping up lead-acid cells, but it otherwise seems pretty solid.

If you’re not quite ready to bug your neighbors, how about you build a backup battery first? How about repurposing an e-bike battery or this backup power solution for keeping a gas water heater working during a power outage?

A dark brown bench suspended between two white and grey rectangular pillars. They are capped in the same brown HDPE material. Aluminum uprights go to a curved solar panel roof that looks somewhat similar to a paragliding chute. The bench is inside a clean-looking workshop with two large toolboxes against a plywood half wall.

Public Power, WiFi, And Shelter

In the US, we’re starting to see some pushback against hostile architecture, and in this vein, [benhobby] built a swanky public power and Wi-Fi access point.

This beautiful piece of infrastructure has 400 watts of solar plugged into 1.2 kWh of battery storage, and can dispense those electrons through any of its 120 VAC, USB-C, or USB-A plugs. The uprights are 3″ aluminum tubing attached to a base consisting of cinder blocks and HDPE panels. Power receptacles are housed in 3D printed enclosures with laser cut acrylic fronts. Three outdoor lights illuminate the stop at night, triggered by a photosensor.

The electronics and battery for the system, including the networking hardware, are in a weatherproof box on each side that can be quickly disconnected allowing field swaps of the hardware. Troubleshooting can then take place back at a workshop. One of the units has already been deployed and has been well-received. [benhobby] reports “There’s one in the wild right now, and it gets plenty of visitors but no permanent tenants.”

Want to see some more interesting hacks for public infrastructure? Check out this self-cooling bus stop, this bus bloom filter, or this public transit display.

Two pieces of paper on a table with a pair of pliers, a screwdriver, and a cup of what is probably coffee or tea. The sheets show a diagram of a bicycle handlebar on one side with a labeled "controller box, controller lever, mount, and battery." The other sheet shows a side view of a 150kg servo mounted on a plate that runs over to a brake caliper with a battery, receiver, and power stabilizer. These parts are also labeled in red text.

Wireless Bike Brakes

Bicycles are the most efficient machines for moving a person around, and wireless drivetrains have been heralded as a way to make shifting more consistent and require less maintenance. [Blake Samson] wondered if the same could be true of wireless brakes.

A closeup of a bike front fork with a large 150kg servo mounted to a plate that puts it above the disc brake caliper. To the side of the caliper, wires are visible going between the servo, control box, and battery.Inspired by the controller for an RC car, [Blake] picked a 150 kg servo attached to a cable-actuated hydraulic disc caliper to apply the braking force. The servo, receiver, power stabilizer, and batteries were all mounted on a custom steel plate fabricated to mount under the caliper. [Blake] cut up an old set of mountain bike brake levers to reuse the handlebar mounts and then put the batteries, controller, and finger triggers on them.

Confident in his hacking skills, [Blake] then took the bike out on some trails to test the brakes. As a prototype, there were a few surprises along the way, like one of the triggers staying locked in the braking position, but they performed admirably enough that he’s mulling over a Mk. 2.

Bikes are one of our favorite hacking platforms. Be sure to checkout this dreamy cargo bike build, an awesome bike camper, or what can happen if your bike is dependent on the cloud to work.

Continue reading “Wireless Bike Brakes”

An image of the inside of a vehicle wheel. An outer ring gear is attached to two articulated sets of three small helical gears attached to a central sun gear. A shaft from the right side enters into the sun gear.

A Revolution In Vehicle Drivetrains?

Power delivery in passenger vehicle drivetrains hasn’t changed much since the introduction of the constant velocity (CV) joint in the 1930s. Most electric vehicles still deliver power via the same system used by internal combustion cars. Hyundai/Kia has now revealed a system they think will provide a new paradigm with their Universal Wheel Drive System (Uni Wheel). [via Electrek]

What appears at first to be a hub motor is in fact a geared wheel that keeps the motor close without the problem of high unsprung weight. Power is fed into a sun gear which can move independently of the wheel allowing the system to maintain a more consistent driveline and avoid power variability over the range of suspension travel like you’d find in a CV joint experiencing high deflection.

We have some concerns about the durability of such a system when compared with the KISS and long development history of CV joints, but we can’t deny that moving the motors of an electric vehicle out to the corners would allow more packaging flexibility for the cargo and passenger areas. We’re also excited to see open source replicas make their way into smaller robotics projects now that the images have been released. If you’ve already made one in CAD, send us a tip at tips@hackaday.com.

Looking for more interesting innovations in electric cars? How about an off-grid camper van? If you think automakers are overcomplicating something that should be simple, read the Minimal Motoring Manifesto.

Continue reading “A Revolution In Vehicle Drivetrains?”