Three purple OshPark boards and a white bread board all attached using a number of jumper wires on a grey cutting mat.

An (Almost) Single-Chip Apple IIe

The Apple II is one of the most iconic microcomputers, and [James Lewis] decided to use the Mega-II “Apple IIe on a chip” from an Apple IIgs to build a tiny Apple IIe.

While there was an Apple II compatibility card using the related Gemini chip, it was initially unclear whether the Mega-II could even work outside of an Apple IIgs given the lack of documentation for either Apple II SOC. [Lewis] did finally get the Mega-II to boot after a great deal of effort in debugging and design. The system is built with three boards: the Mega-II and RAM board, a CPU board with a 65C02, and a video out board.

To simplify routing, the boards are all four layer PCBs. Unfortunately, the chips needed to make this system, especially the Mega-II, aren’t available on their own and must be harvested from an existing IIgs. [Lewis] took care to make sure any desoldering or other part removal was done in a way that it could be reversed. If you want to see all the nitty gritty details, check out his GitHub for the project.

If you want another 6502-based computer in a tiny package, why not try this one built on Perf+ boards?

Continue reading “An (Almost) Single-Chip Apple IIe”

A scan (x-ray?) of a human skull. Electrodes trace around the skull and are attached to the brain. These implants are for reducing Parkinson's tremors.

What Happens When Implants Become Abandonware?

You’ve probably had a company not support one of your devices as long as you’d like, whether it was a smart speaker or a phone, but what happens if you have a medical implant that is no longer supported? [Liam Drew] did a deep dive on what the failure of several neurotechnology startups means for the patients using their devices.

Recent advances in electronics and neurology have led to new treatments for neurological problems with implantable devices like the Autonomic Technologies (ATI) implant for managing cluster headaches. Now that the company has gone out of business, users are left on their own trying to hack the device to increase its lifespan or turning back to pharmaceuticals that don’t do the job as well as tapping directly into the nervous system. Since removing defunct implants is expensive (up to $40k!) and includes the usual list of risks for surgery, many patients have opted to keep their nonfunctional implants. Continue reading “What Happens When Implants Become Abandonware?”

A walnut ukulele with an aluminum piece routing strings at it's base which is facing the camera. The neck of the instrument extends away from the viewer and is held at an angle by a hand with striped sheets in the background.

Travel Uke From A Fallen Tree

When faced with what to build from the trimmings of the walnut tree in her yard, [Amy Qian] decided to build a headless travel ukulele. [via MAKE:]

Headless instruments relocate the tuners to the body of the instrument, and [Qian] had to do a fair bit of trimming and whittling on the body to make the tuners fit just right and still be operable via four scoops cut into the sides. After some initial troubles with the amount of friction on the strings produced by the mandrel, she replaced it with a set of ball bearings and a holder she machined out of aluminum.

We love how [Qian]’s extensive build log goes through the entire process of making this diminutive instrument from trimming dead walnut branches to building a playable instrument. Little details like the maple strip in the neck and the cocobolo accents really take this far beyond the cigar box instruments that start many down the path of luthiery.

Looking for more musical hacks? How about this set of Commodore 64s turned into an accordion or this Baguette Theremin?

An art deco style computer made of several grey/blue boxes with silver grates on top of a maple platform.

Clean Slate Is A Vintage Amplifier-Inspired PC

Hacks that bring a vintage flair to modern electronics never get old, and [Jeffrey Stephenson] delivers with his Project Clean Slate inspired by vintage tube amps.

Thinking outside the traditional single box PC, [Jeffrey] built his computer into a series of component-specific boxes all attached to a platform housing the Micro ATX motherboard. The base is made of plywood with a birds-eye maple veneer and each of the component boxes features two different sizes of wire mesh to manipulate the viewer’s perception of the dimensions. Even the I/O and graphics card plates are custom made from aluminum for this build.

If you really want to dig into how this PC came to life, there’s a very detailed build log including every step of the process from bare board to finished product. We love when we get an inside look at the thought process behind each design decision in a build.

We’ve featured [Jeffrey] before with his Humidor Cluster, and you may also like this PC inside a vintage radio.

Continue reading “Clean Slate Is A Vintage Amplifier-Inspired PC”

A grey keyboard with orange and dark grey accents is angled away from the camera. The keys nearby are clearly distinguishable in the foreground but blurry toward the back/right. The keyboard is quite thick as it also contains a computer motherboard.

Mechanical Keyboard With A Framework Inside

Like the Commodore 64 and other keyboard computers of yore, the [Elevated Systems]’s CJ64 fits all of its processing and I/O into a single keyboard-shaped package.

This iteration of the project takes it to the next level with an enclosure milled out of aluminum instead of the mere 3D printed enclosure of the previous versions. With a Framework mainboard, the ports are configurable via the Framework expansion card system giving you even more options to customize this build. To round it out, this keyboard PC doesn’t scrimp on the keyboard part either with mechanical switches and MT3 profile keycaps.

If you’d like to build one of these for yourself, [Elevated Systems] has uploaded the 3D printed enclosure files to his GitHub repository. The files for machining are available as well, but only to patrons.

For some more Framework-based mods, check out this Framework Tablet, the Framedeck, or this other retro-inspired Framework build. If you want an all-in-keyboard slabtop, then maybe check out Are Slabtops the Future of Computing?

Continue reading “Mechanical Keyboard With A Framework Inside”

The bottom half of a MacBook Air on a purple and pink background has severed wires drawn out of its back to indicate its lack of a screen.

Are Slabtops The Future Of Computing?

The most popular computer ever was the Commodore 64 with its computer-in-a-keyboard form factor. If you have a longing for a keyboard computer with more modern internals, one of the easiest solutions today is to pull the screen off a laptop.

[Umar Shakir] wanted to see what the fuss was about regarding a recent Apple patent and took the top lid off of his M1 Macbook Air and turned it into a “slabtop.” The computer works great wired to a monitor but can also be used wirelessly via AirPlay. The approach doesn’t come without its downsides, of course. Newer MacBooks can’t access recovery mode without the built-in screen, and some older models had their WiFi antennas in the top lid, so making one into a slabtop will leave you desk-bound.

While [Shakir] focuses on MacBooks, this approach should work with any laptop. Apparently, it’s a cottage industry in China already. Back in the day, my own daily driver was a Pentium-powered laptop with its broken LCD (and lid) removed. It worked great with whatever CRT was nearby.

If you’re looking for an off-the-shelf keyboard computer of your own, you might want to check out the Raspberry Pi 400.

A smartphone-sized PCB is in a person's hand. A large blue chip package houses a 486 and the board has a SoundBlaster card and a 40 PIN Raspberry Pi Connector along one edge for attaching a Raspberry Pi Zero.

TinyLlama Is A 486 In Your Pocket

We love retrocomputing and tiny computers here at Hackaday, so it’s always nice to see projects that combine the two. [Eivind]’s TinyLlama lets you play DOS games on a board that fits in your hand.

Using the 486 SOM from the 86Duino, the TinyLlama adds an integrated Crystal Semiconductor audio chip for AdLib and SoundBlaster support. If you populate the 40 PIN Raspberry Pi connector, you can also use a Pi Zero 2 to give the system MIDI capabilities when coupled with a GY-PCM5102 I²S DAC module.

Audio has been one of the trickier things to get running on these small 486s, so its nice to see a simple, integrated solution available. [Eivind] shows the machine running DOOM (in the video below the break) and starts up Monkey Island at the end. There is a breakout board for serial and PS/2 mouse/keyboard, but he says that USB peripherals work well if you don’t want to drag your Model M out of the closet.

Looking for more projects using the 86Duino? Checkout ISA Sound Cards on 86Duino or Using an 86Duino with a Graphics Card.

Continue reading “TinyLlama Is A 486 In Your Pocket”