Peek Behind The Curtain Of This Robotic Mouse

At first glance, this little animatronic mouse might seem like a fairly simple affair. A door opens, our rodent friend pops its head out, looks around, and goes back in. But just like in The Wizard of Oz, a strategically placed curtain is hiding the impressive array of gadgetry that makes the trick possible.

Creator [Will Donaldson] has put together a fantastic write-up of just what went into creating this little fellow, and we think you’ll be surprised at just how serious the mechanics involved are. Take for example the rig that provides horizontal motion with a NEMA 17 stepper motor mated to a 200 mm leadscrew and dual 8 mm rail assembly that would like right at home as part of a 3D printer.

The star of the show rides atop a beefy sliding carriage assembly made of printed components and acrylic, which is linked to the door via a GT2 timing belt and pulley in such a way that it automatically opens and closes at the appropriate time. To inject some life into the puppet, [Will] stuffed it with a pair of SG90 servos in a sort of pan-and-tilt arrangement: the rear servo turns the mouse’s body left and right, while the forward one moves the head up and down.

An Arduino Uno controls the servos, as well as the stepper motor by way of a TB6600 controller, and optical limit switches are used to make sure nothing moves out bounds. [Will] is keeping the CAD files and source code to himself for the time being, though we imagine a sufficiently dedicated mouseketeer could recreate the installation based on the available information.

This would appear to be the first animatronic mouse to grace the pages of Hackaday, but we’re certainly no strangers to seeing folks imbue inanimate objects with lifelike motion.

Continue reading “Peek Behind The Curtain Of This Robotic Mouse”

Pi Powered 1:35 Scale Panther Tank

Tank aficionado [Daniel Zalega] has enjoyed playing around with armored fighting vehicles in the digital realm for years, but only recently realized he had the technology and skills necessary to take his passion into the physical world. Albeit on a slightly reduced scale. So he bought a 1:35 plastic model kit for the German WWII Panther tank from Tamiya, and started working on a way to make it move.

Luckily for [Daniel], the assembled model is essentially hollow. That gave him plenty of room to install the geared drive motors, batteries, motor controllers, voltage regulators, a servo for the turret, and the Raspberry Pi Zero that controls the whole show. Those with an aversion to hot glue would do well not to look too closely at the construction here, but it gets the job done. Besides, it’s not like this little Panther is going to see any front line combat.

Another element of the model kit that made it well-suited to motorization is the fact that it had real rubber treads. That meant [Daniel] just had to pop some holes in the side of the tank, and figure out how to mount the drive sprockets to his gear motors. Unfortunately it looks like the wheels are static on this model, meaning the tread has to be dragged over them. That’s certainly robbing the tank of some power and speed, but in the video after the break, you can see its movement is still fairly realistic.

To control the tank, he points his phone’s browser to a simple page running on the Raspberry Pi. By simply dragging a finger on the screen, you can operate the tank’s two independent treads and rotate the turret. [Daniel] said his original plan was more elaborate, with the web page displaying a live video feed from an onboard camera as well as the readings from various sensors. But at least for now, things are kept as straightforward as possible.

This certainly isn’t the first souped-up toy tank we’ve seen here at Hackaday. From gorgeous steam powered machines to this Tiger tank with a laser-assisted aiming system, these small tracked platforms have long been a favorite of hardware hackers.
Continue reading “Pi Powered 1:35 Scale Panther Tank”

Tiger Boy Advance Is A 90s Kid Dream Come True

From the release of the DMG-01 in 1989 until the final Micro variant hit store shelves in 2005, the Nintendo Game Boy line represented the epitome of handheld gaming for hundreds of millions of players. But that’s not to say there weren’t a wide array of other handheld systems that aimed to chip away at the Japanese gaming giant’s monopoly. SEGA and Sony released high-tech systems that brought impressive technical innovations, while Tiger Electronics famously took the opposite approach with ultra-cheap handhelds that leveraged simplistic games based on popular children’s franchises.

[Chris Downing] had to make do with these budget Tiger games as a child, and now as an adult, he’s determined to made things right with the Tiger Boy Advance. As the name implies, this retro hybrid combines the look and feel of a branded Tiger game with the power and software compatibility of a legitimate Nintendo Game Boy Advance (GBA) circa 2001. It even sprinkles in some modern niceties, like USB-C charging and a backlit display. While most of its charm is probably lost on anyone who didn’t grow up within a fairly narrow range of years, the video below seems to prove that even modern kids can appreciate this one-of-a-kind creation.

From an electronics standpoint, the system is essentially just a gutted GBA crammed into a 3D printed approximation of an old Tiger game from around the mid 1990s. But what makes this project special is the nostalgia-fueled attention to detail that [Chris] brings to the table.

Take for example the custom manufactured faceplate that combines artwork from some of the era’s best known games. Getting the image printed on the back of the CNC-cut piece of clear acrylic proved to be quite a challenge, but the final result looks incredibly professional. Instead of using the GBA’s stock buttons and directional pad, [Chris] decided to 3D print replacements that mimic the look of the original Tiger controls. It all culminates in a device that perfectly recreates the unique look of the original Tiger games.

Some will argue that he’d have done better to equip the system with a Raspberry Pi Zero 2 and the latest build of RetroPie, and frankly, it’s easy to see the appeal of going that route. But [Chris] didn’t make this for us, he built it to encapsulate a very specific time from his own childhood. We’re just glad that the technology now available to the individual maker allowed him to turn this particular dream into reality.

Continue reading “Tiger Boy Advance Is A 90s Kid Dream Come True”

Hackaday Podcast 150: Blackberry Runs Out Of Juice, NODE Has Your Pinouts, Rats Learn DOOM, And 2021 Is Done

Join Hackaday Editor-in-Chief Elliot Williams and Managing Editor Tom Nardi as they ring in the New Year with the first podcast episode of 2022. We get the bad news out early for those still thumbing away at their Blackberries, then pivot into some of the highlights from over the holidays such as the release of NODE’s The Pinouts Book and the discovery of a few expectation-defying OpenSCAD libraries. We’ll look at modifying a water cooler with Ghidra, and the incredible technology that let’s historians uncover the hidden history of paintings. Oh, and we’ll also talk about all the best and most important stories of the last 12 months. There’s a lot of ground to cover, so get comfortable.

Take a look at the links below if you want to follow along, and as always, tell us what you think about this episode in the comments!

Direct download (70 MB)

Continue reading “Hackaday Podcast 150: Blackberry Runs Out Of Juice, NODE Has Your Pinouts, Rats Learn DOOM, And 2021 Is Done”

UV Resin Perfects 3D Print, But Not How You Think

At this point, everyone knows that the print quality you’ll get from even an entry level UV resin printer far exceeds what’s possible for filament-based fused deposition modeling (FDM) machines. But there’s a trade-off: for the money, you get way more build volume by going with FDM. So until the logistics of large-format resin printers gets worked out, folks looking to make things like replica prop helmets have no choice but to put considerable time into post-processing their prints to remove the obvious layer lines.

But thanks to this somewhat ironic trick demonstrated by [PropsNstuff], you can actually use UV resin to improve the finish quality of your FDM prints. The idea is to put a layer of resin over the layer lines and other imperfections of the 3D print, cure it with a handheld UV flashlight, and then sand it smooth. Essentially it’s like using resin in place of a body filler like Bondo, with the advantage here being that the resin cures in seconds.

The thick resin fills in tough spots quickly.

Now to be clear, this isn’t a new idea. Our very own [Donald Papp] investigated the process back in 2018, and [Thomas Sanladerer] covered the idea in a video of his own the following year. But the difference here is that [PropsNstuff] doesn’t just coat the whole print with resin, he takes a more methodical approach. Working in small sections, he targets areas that really need the high-build properties offered by this technique.

With the tough spots addressed, he then moves on to coating larger areas with resin. But this time, he mixes leftover resin from his SLA printer with talcum powder to make a mix that can be brushed on without running everywhere. It takes a few thin coats, but with this mix, he’s able to build up large swaths of the print without losing any surface detail.

Is it still a hassle? Absolutely. But the final result does look spectacular, so until we figure out how to build the replicators from Star Trek, it looks like we’ll have to make up for our technological shortcomings with the application of a little elbow grease.

Continue reading “UV Resin Perfects 3D Print, But Not How You Think”

Another Homebrew Linux Board Success Story

It’s truly incredible what the hobbyist is now capable of. While it would have seemed all but impossible a few years ago, we’re happy to report that yet another dedicated hardware hacker has managed to spin up their own custom Linux single-board computer. Creator [Ian Kilgore] tells us the only goal when developing CATFOOD (yes, that’s the name) was to gain confidence with at-home board production, so it looks like a success to us.

To those who’ve been keeping an eye on this sort of thing, it will probably come as no surprise to hear [Ian] was inspired by the work of [Jay Carlson], who arguably kicked off this whole trend when he put together a bevy of homebrew Linux boards in an effort to compare different System-in-Package ICs. His incredibly detailed write-up of the experience and lessons learned along the way has emboldened other brave souls to take up the challenge.

The USB-C powered board uses an ARM i.MX 6ULL processor and features DDR3, NAND flash, and an Ethernet interface. That last one was the biggest deviation from the reference design, which meant it took a little fiddling to get right. For anyone playing along at home, [Ian] collected up the lessons learned while developing CATFOOD, bringing the whole learning experience full circle.

If you’re interested in more homebrew Linux SBCs, we’d highly recommend reading up on the WiFiWart developed by [Walker]. Over the course of about six months, we got to watch the open hardware board go from concept to a diminutive first prototype.

2021: As The Hardware World Turns

Well, that didn’t go quite as we expected, did it? Wind the clock back 365 days, and the world seemed to be breathing a collective sigh of relief after making it through 2020 in one piece. Folks started getting their COVID-19 vaccines, and in-person events started tentatively putting new dates on the calendar. After a rough year, it seemed like there was finally some light at the end of the tunnel.

Turns out, it was just a another train. New variants of everyone’s favorite acute respiratory syndrome have kept the pandemic rolling, and in many parts of the world, the last month or so has seen more new cases of the virus than at any point during 2020. This is the part of the Twilight Zone episode were we realize that not only have we not escaped the danger, we didn’t even understand the scope of it to begin with.

Case in point, the chip shortages. We can’t blame it entirely on the pandemic, but it certainly hasn’t helped matters. From video game systems to cars, production has crawled to a standstill as manufacturers fight to get their hands on integrated circuits that were once plentiful. It’s not just a problem for industry either, things have gotten so bad that there’s a good chance most of the people reading this have found themselves unable to get their hands on a part or two these last few months. If you were working on a hobby project, it’s a temporary annoyance. But for those who planned on finally bringing their latest big idea to market, we’ve heard tales of heartbreaking delays and costly redesigns.

It would be easy to look at the last twelve months and see nothing but disappointment, but that’s hardly the attitude you want to have at the beginning of the year. So let’s take the high road, and look back on some of the highlights from 2021 as we turn a hopeful eye towards the future.

Continue reading “2021: As The Hardware World Turns”