Rubber Tracked Bicycle Is Horribly Inefficient

Wheeled bikes are efficient machines, and most cycling speed and distance records are held by them. However, [The Q] has a taste for weirder creations that amuse perhaps more than they serve as viable transportation. His latest experiments revolve around tracked propulsion methods.

The build is a wheelless bike that relies on long thin tracks mounted to a mountain bike frame. The tracks carriers are fabricated using steel box section fitted with cogged rollers. The tracks themselves are made using a pair of bicycle chains joined with welded steel bars. They’re fitted with slices of rubber cut out of traditional bike tires for grip. The rear track is driven from the bike’s pedals, while the front is merely left to run freely.

By virtue of its wide, flat tracks, the bike actually stands up on its own. It’s capable of riding in a straight line at slow speed, albeit relatively noisily. Steering is limited by virtue of the flat tracks, which don’t operate well at an angle to the ground. Since the tracks only contact the ground at a point, too, the bike has very high ground pressure, which would make it likely to sink into anything less solid than asphalt.

The build is relatively similar to [The Q]’s previous efforts to build a supposedly square-wheeled bike. What we’d really love to see at this point is a tracked bicycle that actually made the best of the technology – by being both swift and capable of crossing soft, marshy terrain. Video after the break.

Continue reading “Rubber Tracked Bicycle Is Horribly Inefficient”

Build A DIY Space Mouse For A More Efficient CAD Workflow

When you find yourself doing a lot of work in 3D modelling, you occasionally wish for something more capable than the humble two-dimensional mouse. A space mouse is a great tool in this regard, and [Salim Benbouziyane] was inspired to build his own.

[Salim] started his work with research, by watching a teardown of a Connexion Space Navigator 3D mouse. This informed him of the basic functionality and the workings inside. The commercial product appears to use an optical sensor setup, but [Salim] decided to go with a magnetic sensor setup instead due to the parts he had on hand. Namely, a 3-axis magnetometer which seemed perfect for the task.

The build uses a motion platform mounted on six springs which translates and rotates in three dimensions as required. The magnetometer is mounted on the platform above a stationary set of neodymium magnets. Thus, when the platform, and thus sensor, moves, the magnetometer’s output can be used to determine the motion of the platform and translate that into useful viewport commands for CAD software. A RP2040 is charged with reading the magnetometer and acting as a USB HID device. It’s all wrapped up in a neat 3D-printed housing.

For now, it’s a little simpler in its operation than a full 6 DOF Spacemouse, but it nonetheless has helped [Salim]’s workflow improve. A good peripheral like this can be a real boon on the desktop; we’ve seen a few DIY projects in this realm for just that reason. Video after the break.

Continue reading “Build A DIY Space Mouse For A More Efficient CAD Workflow”

Sci Fi UI Made Easy With Arwes

Many of us grew up watching Star Trek, marvelling at the beautiful colorful interfaces on the computers that ran the Starship Enterprise. Today’s computer interfaces have certainly grown fancier since the Windows 3.1 and Mac System 7 days, but they’re still nowhere near that gorgeous. The Arwes framework aims to change that, at least where web apps are concerned.

The framework is inspired by the cyberprep and synthwave aesthetics, while drawing from media like TRON: Legacy and Halo. You can get a peek at what it can do on the Arwes website, or look at how it runs on sites like SoulExtract or the Cyber Movie Database. It’s very much about glowing lines, 1980s computer sounds, and screens with animated text fills.

It’s still in an alpha release, and likely isn’t yet ready for business-critical production use. It currently consists of a set of basic components that can be assembled into a functional futuristic website design, but you’ll need some experience to use the tools at hand. There’s a sandbox for experimenting that should help in that regard.

You might just find that it’s the perfect tool to create an interface for your very own cyberdeck, or you might put it to work on your next website design. Either way, if you create something fantastic, don’t hesitate to drop us a line.

 

VCF’s Swap Meet Experiment Helps Support Expansion

There was a time when those looking for tech bargains had to either try their luck at the local flea market, or make the pilgrimage out to a dedicated swap meet. But with the rise of websites like eBay and Craigslist these parking lot meetups started to fall out of favor, to the point that they became all but extinct over the last couple decades.

So there was some risk involved when the Vintage Computer Federation decided to dust off the concept as a way of sidestepping New Jersey’s COVID-era limitations on indoor meetups. But as VCF Vice President [Jeffrey Brace] explained during our visit earlier this month, the experiment has more than paid off. Each swap meet has brought in buyers and sellers from all over the Mid–Atlantic region, helping to not only raise money for the VCF’s ongoing preservation efforts, but spread awareness of the organization and their goals.

The VCF hopes to expand their existing museum.

During our chat, [Jeffrey] goes over the origins and growth of the VCF swap meet, and how it compares to their annual Vintage Computer Festival. He also speaks about the Federation’s desire to expand their already impressive museum space into a far larger climate-controlled area that will allow for even more classic computer hardware to be put on display.

We visited the VCF swap meet back in 2021, and came away with the distinct impression that [Jeffrey] and the rest of the team had a winning idea on their hands. We’re happy to report that as of 2023 the areas where we saw room for improvement — namely the lack of on-site refreshment and a somewhat overly narrow focus on vintage hardware — have both been addressed. In its current form, this is truly a must-see event for anyone with an interest in computers, radio, or even just general electronics who happens to live within driving distance of the Jersey shore.

While eBay certainly makes it easy to bid on a piece of gear, you’re unlikely to make a new friend while doing so. Events like this are more than just a way to buy and sell hardware, but provide a chance for like-minded individuals to connect and build a community. We’re glad to see the event grow larger each year, and hope it inspires similar revivals elsewhere.

Continue reading “VCF’s Swap Meet Experiment Helps Support Expansion”

Watch This Beautiful Japanese Factory Manufacturing Hand Planes

If you’re a woodworker, you know the value of a good hand plane. A stout model will last a lifetime if properly cared for. [Process X] has now taken us behind the scenes of a Japanese factory that turns out quality hand planes to show us how it’s done. 

The video starts at the forge, where steel is attached to soft iron to form a blank that will become the hand plane blade. This is proper blacksmithing, with autohammers and flames akimbo. It’s also a woodworking story, though, with the hand plane bodies themselves carefully prepared for the years of faithful service ahead. We get to see the raw wood roughed into shape and put through the thicknesser, along with the more interesting machining steps that carve out the angled pockets and the blade slot.

The final assembly is great, too, particularly when the pins are nailed in to hold everything in place. The test is the icing on the cake, in which the hand plane peels a perfect contiguous strip from a long piece of lumber.

It’s still very much a manual process, with the workshop largely relying on classical machine tools. There’s not a hint of CNC control to speak of. For the Komori Small Plane Factory and the Koyoshiya Watanabe Woodworking Shop, though, the old methods are doing just fine.

Continue reading “Watch This Beautiful Japanese Factory Manufacturing Hand Planes”

Know Snow: Monitoring Snowpack With The SNOTEL Network

With summer just underway here in North America, it may seem like a strange time to talk about snow. But when you live in North Idaho, winter is never very far away and is always very much on everyone’s mind. Our summers are fierce but all too brief, so starting around September, most of us begin to cast a wary eye at the peaks of the Bitterroot range in the mornings, looking for the first signs of snow. And in the late spring, we do much the same, except longingly looking for the first signs that the snowpack is finally breaking up.

We all know how important snow is, of course. Snow is our lifeline, nearly the only source of drinking water we have here, as well as the foundation of our outdoor recreation industries. We also know that the snowpack determines our risk for wildfires, so while the long, dark winters may take a psychological toll, the longer the snow stays on the mountains, the less chance we have of burning come summer.

These are all very subjective measures, though, and there’s way too much riding on the snowpack to leave it up to casual observation. To make things more quantitative, the US Department of Agriculture’s Natural Resources Conservation Service (NRCS) has built a system across the western US that measures the snowpack in real-time, and provides invaluable data to climatologists, fish and game managers, farmers, and even the recreation industry, all of whom have a vested interest in the water held within. The network is called SNOTEL, and I recently got a chance to take a field trip with a hydrologist and get an up-close look at how it works.

Continue reading “Know Snow: Monitoring Snowpack With The SNOTEL Network”

Demo Relativity For A C-Note

If you are a science fiction fan, you probably hate the theory of relativity. After all, how can the Enterprise get to a new star system every week if you can’t go faster than the speed of light? [Nick Lucid] wants to set you straight: it is real, and you can prove it to yourself for under $100.

The idea uses muons created in our atmosphere by cosmic rays colliding with gasses in the atmosphere. So how do you detect muons yourself? [Nick] shows you how to do it with a fish tank, dry ice, and rubbing alcohol. If that sounds like a cloud chamber, you aren’t wrong.

A cloud chamber is undeniably cool, but how does it prove relativity? You’ll see several kinds of particles interacting with your cloud chamber, but you can tell which ones are muons by the size and motion of the streaks. The muons don’t last very long. So you’d expect very few muons to make it to the surface of the Earth. But they not only reach the surface but go deep under it, as well.

So how do you explain it? Relatively. The muon experiences its average 2.2 microseconds lifetime in what appears to us to be over 150 microseconds, even if it is moving relatively slowly for a muon. Some muons are faster or live longer, so we see a lot of them hit the Earth every minute of every day. This is due to time dilation and also explains length contraction because the muon moves at a certain speed, yet it appears to go further to us than to the muon.

Coincidentally, we recently discussed this same effect relative to using muons for underground navigation. If you want an easier way to count muons with a computer, you can build a detector for about the same price as the cloud chamber.

Continue reading “Demo Relativity For A C-Note”