This Stainless Steel Knife Build Starts With Raw Iron Ore

Making knives at home has become a popular hobby, thanks partly to reality TV and the free time and idle hands afforded by lockdowns. Depending on how far you get into the hobby, builds can range from assembling and finishing a kit with pre-forged parts, to actual blacksmithing with a hammer and anvil. But pretty much every build includes steel from a commercial supplier.

Not this one. Rather than buy his metal from the usual sources, [Thoisoi]’s first stop was an iron mine in the Italian Alps, where he picked up a chunk of iron ore — magnetite, to be precise. Smelting one’s own iron from raw ore and alloying it into steel is generally not a backyard project thanks to the high temperatures needed, a problem [Thoisoi] solved with the magic of thermite. The iron oxide and aluminum in the thermite mix react in an exceptionally exothermic manner to generate elemental iron, which under controlled conditions can be captured as a more or less pure ingot, ready for forging.

After a test with commercially obtained iron oxide, [Thoisoi] tried his pulverized magnetite. And thanks to the addition of goodies like graphite, manganese, nickel, silicon, and chromium, he was eventually able to create a sizable lump of 402 stainless steel. He turned the metal over to an actual blacksmith for rough forging; it sure seemed to act like steel on the anvil. The finished knife looks good and performs well, and the blade has the characteristic look of stainless. Not a bad result, and all at the cost of a couple of clay flowerpots.

Continue reading “This Stainless Steel Knife Build Starts With Raw Iron Ore”

A family of PixMob bracelets being coltrolled by an ESP32 with an IR transmitter attached to it. All the bracelets are shining a blue-ish color

PixMob Wristband Protocol Reverse-Engineering Groundwork

The idea behind the PixMob wristband is simple — at a concert, organizers hand these out to the concertgoers, and during the show, infrared projectors are used to transmit commands so they all light up in sync. Sometimes, attendees would be allowed to take these bracelets home after the event, and a few hackers have taken a shot at reusing them.

The protocol is proprietary, however, and we haven’t yet seen anyone reuse these wristbands without tearing them apart or reflashing the microcontroller. [Dani Weidman] tells us, how with [Zach Resmer], they have laid the groundwork for reverse-engineering the protocol of these wristbands.

Our pair of hackers started by obtaining a number of recordings from a helpful stranger online, and went onto replaying these IR recordings to their wristbands. Most of them caused no reaction – presumably, being configuration packets, but three of them caused the wristbands to flash in different colors. They translated these recordings into binary packets, and Dani went through different possible combinations, tweaking bits here and there, transmitting the packets and seeing which ones got accepted as valid. In the end, they had about 100 valid packets, and even figured out some protocol peculiarities like color animation bytes and motion sensitivity mode enable packets.

The GitHub repository provides some decent documentation and even a video, example code you can run on an Arduino with an IR transmitter, and even some packets you can send out with a  Flipper Zero. If you’re interested in learning more about the internals of this device, check out the teardown we featured back in 2019.

Hackaday Prize 2022: DIY Brushless Hand Cranked Generator

A standard part of travel kit for the 2020s is now a battery pack — a hefty lithium-ion cell with onboard electronics for USB charging, that ensures all of our devices stay topped up while we’re out of range of a socket. But what happens when there is no handy mains supply to recharge it from? Step in [Chleba], with a hand cranked generator.

There are plenty of hand cranked generators to be found online, from tiny devices intended to top up a single phone to sturdy metal boxes intended for battery charging. This one differs from those in that most use a brushed DC motor as a cheap generator, while here that function comes from a stepper motor feeding a rectifier pack and thence a DC-to-DC converter. A step-up gearbox provides the necessary shaft speed, and a neat 3D-printed case rounds everything off.

The result is about as neat a generator as you could imagine, and would certainly be of use shoved into any off-grid backpack. Meanwhile it’s not the first we’ve shown you, we’ve even see one that could start a car.

Learning By Playing

Summer break has started over here, and my son went off to his first of a few day-camp-like activities last week. It was actually really cool – a workshop held by our local Fablab where they have the kids make a Minecraft building and then get to 3D-print it out. He loves playing and building in Minecraft, so we figured this would be right up his alley.

TinkerCAD model of a Lego Minecraft fox. Kiddo trifecta!

I had naively thought that it would work something like this: the kids build something in Minecraft, and then some software extracts the build and converts it into an STL file. Makes sense, because they already are more-or-less fluent in Minecraft modelling. And as I thought about that, it was a pretty clever idea.

But the truth was even sneakier. They warmed up by making something in Minecraft, then they opened up TinkerCAD, which was new to all of the kids, and built a 3D model there. Then they converted the TinkerCAD models into Minecraft, and played with what they had just built while the 3D printers hummed away.

The kids didn’t even flinch at having to learn a new 3D modelling tool, and the parallels to what they were already comfortable doing in Minecraft were obvious to them. My son came home and told me how much easier it was to do your 3D modelling in “this other Minecraft” – he meant TinkerCAD – because you don’t need to build everything out of single blocks. He thought he was playing games, but he’d secretly used his first CAD tool. Nice trick!

Then I look back and realize how much I must have learned about computers through playing as a kid. Heck, how much I still learn through playing. And of course I’m not alone – that’s one of the things that shines through in a large number of the projects we feature. Hack on and have fun!

Solar Plane Might Be Able To Last Through The Night

“Just add solar panels to the wings” is a popular suggestion for improving the flight times of fixed-wing drones. However, the reality is not so simple, and it’s easy to hurt rather than help flight times with the added weight and complexity. The team at [Bearospace Industries] has been working on the challenge for the while, and their Solar Dragon aircraft recently had a very successful test flight, producing about 50% more power than it was consuming.

Instead of just trying to slap solar panels to an existing plane, an airframe should ideally be designed from the ground up as a balancing act between a range of factors. These include weight, efficiency, flight envelope, structural integrity, and maximum surface area for solar panels. All the considerations are discussed by [Bearospace] in an excellent in-depth video, which is an indispensable resource for anyone planning to build a solar plane.

[Bearospace] put all the theory into practice on Solar Dragon, which incorporates over 250 W of high-efficiency Maxeon C60 solar cells on the wing, tail, and triangular fuselage. The cells were wired to match their maximum power point voltage as closely as possible to the plane’s 3S lithium-ion battery pack, enabling the solar cells to charge the battery directly. To prevent overcharging, a solid state relay was used to disconnect the solar cells from the battery as required.

The batteries maintained the same average state of charge during the entire one-hour late morning flight, even though the panels were only connected 65% of the time. The team expects they might be able to get even better performance from the cells with a good MPPT charger, which will be required for less than ideal solar conditions.

Solar Dragon has a much larger payload capacity than was used during the test flight, more than enough for an MPPT charger and a significantly larger battery. With this and a long list of other planned improvements, it might be possible for the Solar Dragon to charge up during the day and fly throughout the night on battery power alone. One interesting potential approach mentioned is to also store energy in the form of altitude during the day, and use the aircraft’s slow sink rate to minimize battery usage at night.

Solar planes come up every few months on Hackaday, with [rctestflight] being one of the usual suspects. You also don’t need solar panels for long flight times, as [Matthew Heiskell] proved with a 10-hour 45 minute flight on battery power alone.

Continue reading “Solar Plane Might Be Able To Last Through The Night”

Here’s How The Precursor Protects Your Privacy

At some point, you will find yourself asking – is my device actually running the code I expect it to? [bunnie] aka [Andrew Huang] is passionate about making devices you can fundamentally, deeply trust, and his latest passion project is the Precursor communicator.

At the heart of it is an FPGA, and Precursor’s CPU is created out of the gates of that FPGA. This and a myriad of other design decisions make the Precursor fundamentally hard to backdoor, and you don’t have to take [bunnie]’s word for it — he’s made an entire video going through the architecture, boot protections and guarantees of the Precursor, teaching us what goes into a secure device that’s also practical to use.

Screenshot from the video, showing a diagram of how precursor's software and hardware components relate to each other If you can’t understand how your device works, your trust in it might be misplaced. In the hour long video, [bunnie] explains the entire stack, from the lower levels of hardware to root keys used to sign and verify the integrity of your OS, along the way demonstrating how you can verify that things haven’t gone wrong.

He makes sure to point out aspects you’d want to be cautious of, from physical security limitations to toolchain nuances. If you’re not up for a video, you can always check out the Precursor wiki, which has a treasure trove of information on the device’s security model.

As you might’ve already learned, it’s not enough for hardware to be open-source in order to be trustworthy. While open-source silicon designs are undoubtedly the future, their security guarantees only go so far.

Whether it’s esoteric hard drive firmware backdoors, weekend projects turning your WiFi card into a keylogger, or rootkits you can get on store-bought Lenovo laptops, hell, even our latest This Week In Security installment has two fun malware examples – there’s never a shortage of parties interested in collecting as much data as possible.

Everything You Wanted To Know About SDRAM Timing But Were Afraid To Ask

One of the problems with being engaged in our hobby or profession is that people assume if you can build a computer out of chips, you must know all the details of their latest laptop computer. Most of the memory we deal with is pretty simple compared to DDR4 memory and if you’ve ever tried tweaking your memory, you know a good BIOS has dozens of settings for memory. [Actually Hardcore Overclocking] has a great description of a typical DDR4 datasheet and you can watch it in the video below.

Of course, he points out that knowing all this really doesn’t help you much with memory overclocking because you can’t really predict the complex effects without trial and error. However, most of us like to understand the knobs we are randomly twisting. On top of that, one theme of the video is that DRAM is dumb and simple. If you’ve ever thought about using it in a project, this might be a good place to start.

Continue reading “Everything You Wanted To Know About SDRAM Timing But Were Afraid To Ask”