Australia’s Space Program Finally Gets Off The Pad, But Only Barely

Australia is known for great beaches, top-tier coffee, and a laidback approach to life that really doesn’t square with all the rules and regulations that exist Down Under. What it isn’t known for is being a spacefaring nation.

As it stands, a startup called Gilmour Space has been making great efforts to give Australia the orbital launch capability it’s never had. After numerous hurdles and delays, the company finally got their rocket off the launch pad. Unfortunately, it just didn’t get much farther than that.

Continue reading “Australia’s Space Program Finally Gets Off The Pad, But Only Barely”

Can A Thermal Printer Cure ADHD?

No, of course not. Per Betteridge’s law, that’s the answer to any headline with a question mark. On the other hand, while a thermal printer might not cure ADHD, it can help treat it — according to [Laurie Hérault], to the point of curing his procrastination habit. Even if you don’t have ADHD, you probably do procrastinate sometimes, so this hack is worth a look.

The printer itself is a key hardware portion of the hack, but the hack itself is purely organizational. [Laurie] started with post-its before adding automation. Before the post-it notes came a simple realization: [Laurie] could sit and play games for hours, but not buckle down for serious work for more than a few minutes, if he could even get started. (Who can’t relate?) That sent him down a rabbit hole reading about the psychology of what makes games so addictive — and the idea of “gamification” that was so popular in educational circles not long ago.

Unlike work, games give you a loop of unambiguous, instant, and continuous feedback to pump your dopamine circuits. [Laurie] uses the example of an FPS. You aim, you shoot — and either you miss, or you hit the target. Either way, there’s feedback. When you hit, your brain gives you dopamine. This fast loop of input -> feedback is what [Laurie] felt he was missing from his day.

Continue reading “Can A Thermal Printer Cure ADHD?”

A Speed Loader For Your 3D Printer Filament

Reloading filament on a 3D printer is hardly anyone’s favorite task, but it’s even worse when you’re trying to shove stiff filament down a long and winding Bowden tube. Enter the speed loader from [Mr Flippant], which aims to take the pain out of this mechanically-frustrating chore.

The design is simple enough. It’s a small handheld tool that uses a 12 VDC gear motor to drive a set of Bondtech-style drive gears that you might find in an extruder. They’re assembled in a 3D printed housing with a microswitch to activate the motor, and a 9 volt battery to supply the juice.

To use the device, first thread the filament into the beginning of the Bowden tube. The idler gear is on a hinge, such that clamping it into position around the filament with the main gear activates the microswitch and turns the motor on, driving the filament all the way to the extruder. Job done! [Mr Flippant] notes that the filament should be as straight and unkinked as possible for best results, but that’s good advice when 3D printing in general.

Funnily enough, around these parts, when we talk about speed loaders, we’re usually discussing tapes.

Continue reading “A Speed Loader For Your 3D Printer Filament”

A photo of the HAT with the LoRa module and relay visible on the top

LoRaSense Pi Hat Aims To Kick Start IoT Projects

[Avi Gupta] recently sent in their LoRaSense RGB Pi HAT project. This “HAT” (Hardware Attached to Top) is for any Raspberry Pi with 40-pin header. The core of the build is the custom printed circuit board which houses the components and interconnects. The components include an SHT31 temperature and humidity sensor, an SX1278 LoRa module, and a 10 amp 220 VAC relay. The interconnects include support for UART, I2C, SPI, and WS2812B RGB LED interfaces as well as a stackable header for daisy chaining HATs.

The attached components in combination support a wide range of use cases. Possible uses for this Raspberry Pi HAT include smart home systems, agricultural projects, industrial monitoring, smart greenhouse, remote weather stations, or alerting systems. You can detect weather conditions, send and receive information, switch mains powered loads, and use RGB LEDs for status and alerting.

If you’re interested in LoRa technology be sure to read about the Yagi antenna that sends LoRa signals farther.

Why Names Break Systems

Web systems are designed to be simple and reliable. Designing for the everyday person is the goal, but if you don’t consider the odd man out, they may encounter some problems. This is the everyday life for some people with names that often have unconsidered features, such as apostrophes or spaces. This is the life of [Luke O’Sullivan], who even had to fly under a different name than his legal one.

[O’Sullivan] is far from a rare surname, but presents an interesting challenge for many computer systems. Systems from the era of penny pinching every bit relied on ASCII. ASCII only included 128 characters, which included a very small set of special characters. Some systems didn’t even include some of these characters to reduce loading times. Throw on the security features put in place to prevent injection attacks, and you have a very unfriendly field for many uncommon names.

Unicode is a newer standard with over 150,000 characters, allowing for nearly any character. However, many older systems are far from easy or cheap to convert to the new standard. This leaves many people to have to adapt to the software rather than the software adapting to the user. While this is simply poor design in general, [O’Sullivan] makes sure to point out how demeaning this can be for many people. Imagine being told that your name isn’t important enough to be included, or told that it’s “invalid”.

One excuse that gets thrown about is the aforementioned injection prompts that can be used to affect these systems. This can cause systems to crash or even change settings; however, it’s not just these older systems that get affected. For modern-day injection prompts, check out how AI models can get affected!

Continue reading “Why Names Break Systems”

2025 One Hertz Challenge: Shoulda Put A Ring Oscillator On It

Entries keep ticking in for the One Hertz Challenge, some more practical than others. [Pierre-Loup M.]’s One Hertz Sculpture  has no pretensions of being anything but pretty, but we can absolutely respect the artistic impulse behind it.

The sculpture is a free-form circuit inside of a picture frame. There are 9 LEDs in a ring with a few other components to produce a reverse-chase effect (one going dark at a time) taking about 1 second to circle the sculpture. As far as free-form circuit art goes, it’s handsomely done, but as this is Hackaday it’s probably the electronics, rather that the aesthetics that are of interest.

The circuit is an example of a ring oscillator: a cascading chain of NOT gates, endlessly feeding into and inverting one

An animated gif of the sculpture at work
Without timing it, it looks like 1 Hz, even if we know it’s not.

another. The NOT gates are implemented in resistor-transistor logic with 2N3904 NPN transistors, nine in total. Of course the inverter delay of this sort of handmade logic gate is far too fast for an aesthetically pleasing (or visible) chase, so some extra circuitry is needed to slow down the oscillations to something less than the 5 MHz it would naturally do. This is affected by pairing every transistor with an RC oscillator. Ideally the RC oscillator would have a 0.111..s period (1/9th of a second), but a few things got in the way of that. The RC oscillator isn’t oscillating in a vacuum, and interactions with the rest of the circuit have it running just a little bit fast. That’s really of no matter; a simple oscillator circuit like this wasn’t going to be a shoe in for the accuracy-based Time Lords category of this contest. As a sculpture and not a clock, you’re not going to notice it isn’t running at exactly 1Hz. (Though a ring-oscillator based clock would be a sight indeed.)

We’ve seen ring oscillators before, including inside the venerable 8087 coprocessor and this delightfully romantic beating-heart gift, but this is the first one that seems to have entered the One Hertz Challenge.

If you have a hankering for hertz, the contest is still open, but you’d better get ticking! The contest closes August 19th.

Flex PCB Underlies The Watch Of The Future

If you were at OpenSauce, you may have seen new Youtuber [Sahko] waltzing about with a retrofuturistic peice of jewelery that revealed itself as a very cool watch. If you weren’t, he’s his very first video on YouTube detailing the design and construction of this piece.  We’ve embedded it below, and it’s worth a watch. (Pun intended, as always.)

The build was inspired by the delightful amber LED dot-matrix display modules that circle the band of the watch. They go by HCMS2901, but [Sahko] recommends using the HCMS3901 as it’s both more 3.3V-tolerant and easier to find now. A challenge in mounting so many displays was the voltage on the supply rail dropping below the logic level; presumably the newer version does not have this problem to the same degree. Either way we love the look of these little displays and are pondering projects of our own that might include them.

He’s got quite a few wrapped around his wrist, so at full brightness, all these displays draw one amp. That explains why like the LED watches of the 1970s, the default state of the displays is “OFF”. Even with a LiPo pouch salvaged from a disposable vape, the runtime would only be half an hour at full brightness without that periodicity. Luckily [Sahko] included buttons on the band of the watch to activate it and control the brightness so it isn’t always blasting at full. There are also different modes available, including a really cool waterfall effect you can see in the video.

The band is an interesting choice, too: it’s just a flex PCB. There’s nothing backing it, aside from its own stiffeners, which makes us very curious how well this watch would hold up to daily use. There’s no clasp in the traditional sense, either: the band is closed by a 4-pin connector that doubles as both charge and the USB programmer for the stm32u08 microcontroller that runs the displays. Conveniently for a watch, this version of the stm32 has an RTC, so it keeps time as well. We dig the minimalism of this design; it’s a great contrast to the maximalism of wrapping your wrist in displays.

We’ve seen very similar displays on an edge-viewed watch, but a tiny amber LED matrix never gets old. If you wrapping your wrist in all those tiny LEDs is too impractically power-hungry, try using Nixie tubes.

We’re always watching for projects– wrist mounted clocks or otherwise– so if you’ve got the time, please drop us a tip.

Continue reading “Flex PCB Underlies The Watch Of The Future”