Remoticon Tickets And Workshops Just Dropped

Hackaday Remoticon happens November 6-8 worldwide! The weekend will be packed with virtual activities, and most of them are hands-on workshops that you can participate in from the comfort of your home, lab, garage, basement, lair, or other socially distanced location of your choosing.

The news today is that everyone should register for Remoticon right now, and that we’re opening up registration for about half of the total workshops. More details on the remaining workshops, demos, and some special events will be available in a future article.

Get a Ticket for Remoticon, Then Register for Workshops

Step 1: Register for the Con. What you want to do right now is head over to the Remoticon ticketing page and register for the conference. We need to get a headcount so that our servers don’t melt down during this massive online social event. You can get a ticket for free, or you can choose pay as you wish — scroll to the bottom of the tickets under “Donations” — and those proceeds go to charities that feed, house, or educate people. In these hard times, if you’re in a position to spare a few bucks, please do so.

Step 2: Buy your workshop ticket(s). A workshop isn’t a workshop unless you can ask questions and get help along the way. Workshop tickets are for attendees who want to participate live, interacting with the presenters and other attendees via video chat. We’ve made all workshop tickets $10 as “skin in the game” to help ensure that these limited slots go to good use. Proceeds from workshop tickets will be used to offset the costs of hosting Remoticon.

If there is one request that we get every Supercon, it’s to film the workshops. This year, we can! If you can’t attend a workshop that you’re interested in we plan to record, edit, and publish them all so everyone can follow along at a later date.

The registration page has workshop descriptions listed when you select your ticket, but here are the titles whet your appetite. Thank you to everyone who submitted a workshop proposal, none of this is possible without you, naturally.

  • Basics of RF Emissions Debugging
  • Crowd-Controlled Robots
  • The Hackers Guide to Hardware Debugging
  • How to 3D Print onto Fabric
  • Introduction to Firmware Reverse Engineering
  • Introduction to Modular Synthesis using VCV Rack
  • KiCad to Blender > Photorealistic PCB renders
  • Learn How to Hack a Car
  • Live Breaking into Encrypted 3D Printer Firmware
  • MachineChat – JEDI One – A Universal Sensor Hub
  • PCB Reverse Engineering
  • Prototyping to the Max
  • Soldering, Nothing To Be Afraid Of!
  • Tiny ML
  • Zero to ASIC in Two Hours

Axe Hacks: New Sounds For Your Electric Guitar Beginning From What Makes Them Tick

Creating music is a perfect hobby for anyone into hacking, and the amount of musical hacks and self-made instruments we come across here makes that supremely evident. It’s just a great match: you can either go full-on into engineering mode as music is in the end “just” applied physics, or simply ignore all of the theory and take an artistic approach by simply doing whatever feels right. The sweet spot is of course somewhere in between — a solid grasp of some music theory fundamentals won’t hurt, but too much overthinking eventually will.

The obvious choice to combine a favorite pastime like electronics or programming with creating music would be in the realm of electronic music, and as compelling as building synthesizers sounds, I’ll be going for the next best thing instead: the electric guitar. Despite its general popularity, the enormous potential that lies within the electric guitar is rarely fully utilized. Everyone seems to just focus on amp settings and effect pedals when looking for that special or unique sound, while the guitar itself is seen as this immutable object bestowed on us by the universe with all its predestined, magical characteristics. Toggle a pickup switch, and if we’re feeling extra perky, give that tone pot a little spin, that’s all there is to it.

The thing is, the guitar’s electrical setup — or wiring — in its stock form simply is as boring and generic as it can get. Sure, it’s a safe choice that does the job well enough, but there’s this entirely different world of tonal variety and individual controllability locked inside of it, and all it really takes is a screwdriver and soldering iron to release it. Plus, this might serve as an interesting application area to dive into simple analog electronics, so even if guitars aren’t your thing yet, maybe this will tickle your creativity bone. And if bass is more your thing, well, let me be ignorant and declare that a bass is just a longer guitar with thicker, lower-tuned strings, meaning everything that follows pretty much applies to bass as well, even if I talk about guitars.

However, in order to modify something, it helps to understand how it functions. So today, we’ll only focus on the basics of an electric guitar, i.e. what’s inside them and what defines and affects their tone. But don’t worry, once we have the fundamentals covered, we’ll be all settled to get to the juicy bits next time.

Continue reading “Axe Hacks: New Sounds For Your Electric Guitar Beginning From What Makes Them Tick”

A Monotrack Bike With Only Basic Tools And Parts

Tracked vehicles are cool, but can be quite complicated to build. [XenonJohn] wanted to skip the complexity, so he created Vector, an electric tracked motorcycle using only basic parts and tools. No machine tools required.

If it looks familiar, it’s because it was inspired by [Make It Extreme]’s monotrack motorcycle that we covered last year. [XenonJohn] liked the concept, but wanted one that was simpler to build. That meant ditching the custom machined parts like the wheels and the suspension system. These were replaced with three go cart wheels and axles mounted in pillow blocks, on a simple welded frame. An e-bike battery powers a 500 W golf cart motor that drives the rear wheel. Like [Make It Extreme]’s version, the track is an SUV tire with the sidewall cut off. [XenonJohn] used tin snips to do this, but from personal experience we would recommend a utility knife. This track design will have a tendency to collect debris inside it, so cutting some hole in the tread could help. As with most single wheeled/tracked vehicles, you really don’t want to try and stop quickly.

It looks like this bike works fine in straight lines, but there is room for improvement with the steering. [XenonJohn] has some ideas to do this, which we hope to see some time in the future. Let us know in the comments how you would make it turn better.

[XenonJohn] really like vehicles that can make you face plant. He built quite a few self-balancing motorcycles, one of which was supposedly designed with first responders in mind. It honestly seems more likely to create an emergency than respond to one.

Autonomous Rover Navigates The House With LIDAR

For those wishing to explore robot autonomy, there’s no better way then to learn by doing. [Greg] was in that camp, and decided to build an autonomous rover to roam his house, and learned plenty along the way.

[Greg]’s aims with the project were to build a robot that was capable of navigating his home without external assistance. To do the job, a Raspberry Pi 3 was put in charge, and kitted out with a LIDAR for mapping. Pololu Roboclaw motor controllers are then used to allow the Raspberry Pi to drive the robot’s individual wheel motors, giving the four-wheeled bot skid steering capability.

[Greg] goes into immense detail on the project’s writeup, exploring the code and concepts behind its autonomous abilities. Creating a robot that can navigate using LIDAR is no easy task, but [Greg] does a great job of explaining how it all works, and why.

It’s not the first autonomous rover we’ve seen here, and we’re sure it won’t be the last. If you’ve got your own build coming together in the lab, be sure to let us know. Video after the break.

Continue reading “Autonomous Rover Navigates The House With LIDAR”

Adding MIDI To A Mini Synth Is Easy As Pi

There are a handful of relatively dirt cheap synths out there like the KORG Monotron, but many of them use ribbon controllers that aren’t very precise.  Ribbon controllers basically slide pots that you operate with your finger or a stylus.  They’re painted to look like piano keys in order to show you approximately where the notes are supposed to be. The Stylophone is another extremely affordable synth that does even less as a synthesizer and uses this type of input. It’s a fun input if you don’t mind imprecision, but can be annoying otherwise.

[schollz] isn’t satisfied to synth this way, so they added MIDI input to their KORG Monotron using a Raspberry Pi and a DAC. Fortunately, the Monotron is quite the hackable little synth, with nice, big, labelled pads on the PCB.

All it really took was a couple of solder joints in the right places, plus a clever Python script. The script listens for MIDI input from a keyboard, and then controls an MCP4725 DAC, which sends voltages to the Monotron. [schollz] wrote a tuning function that computes the FFT of the MIDI tones to find the fundamental frequencies of each to send along to the Monotron. Check it out after the break.

If liquid control is what you’re after but all you have is a keyboard, try making your own ribbon controller.

Continue reading “Adding MIDI To A Mini Synth Is Easy As Pi”

A Motorcycle Dashboard Straight From The ECU

Classic motorcycles are the wild west of information displays. Often lacking even basic instrumentation such as a fuel gauge and sometimes even a speedometer, motorcycles have come a long way in instrument cluster design from even 20 years ago. There’s still some room for improvement, though, and luckily a lot of modern bikes have an ECU module that can be tapped into for some extra information as [Sophie Wheeler] illustrates with her auxiliary motorcycle dashboard.

This display is built for a modern Honda enduro, and is based upon an ESP32 module. The ESP32 is tied directly into the ECU via a diagnostic socket, unlike other similar builds that interface with a CAN bus specifically. It can monitor all of the bike’s activity including engine temperature, throttle position, intake air temperature, and whether or not the bike is in neutral. [Sophie] also added an external GPS sensor so the new display can also show GPS speed and location information within the same unit.

[Sophie] credits a few others for making headway into the Honda ECU. [Gonzo] created a similar build using a Raspberry Pi and more rudimentary screen but was instrumental in gathering the information for this build. If you’re looking for a display of any kind for your antique motorcycle which is lacking an ECU, though, we would suggest a speedometer made with nixie tubes.

Building A Cell Testing Station For 18650s

The 18650 is perhaps the world’s favorite lithium battery, even if electric car manufacturers are beginning to move towards larger cells such as the 21700. Used heavily in laptops and flashlights, it packs a useful amount of energy into a compact, easy to use package. There’s a small industry that has developed around harvesting these cells from old equipment and repurposing them, and [MakerMan] wanted to a piece of the action. Thus, he created a cell testing station to help in the effort.

Make no mistake, this is not a grandiose smart cell tester with 40 slots that logs every last iota of data into a cloud spreadsheet for further analysis. Nope, this is good old fashioned batch processing. [MakerMan] designed a single PCB that replicates the same cell testing circuit four times. Since PCB houses generally have a minimum order quantity of ten units, [MakerMan] ended up with forty individual cell testers on ten PCBs. Once populated, the boards were installed on a wooden frame with an ATX power supply which supplies the juice to run the system.

Overall, it’s a quick, cheap way for capacity testing cells en masse that should serve [MakerMan] well. We look forward to seeing where these cells end up. We’ve seen his work before, too – with a self-built laser engraver a particular highlight. Video after the break.

Continue reading “Building A Cell Testing Station For 18650s”