Whole-Fruit Chocolate: Skipping The Sugar By Using The Entire Cacao Pod

Images of whole-fruit chocolate formulations after kneading at 31 °C and subsequent heating to 50 °C. The ECP concentration in the sweetening gel and the added gel concentrations into the CM are shown on the x and y axis, respectively. (Credit: Kim Mishra et al., Nature Food, 2024)
Images of whole-fruit chocolate formulations after kneading at 31 °C and subsequent heating to 50 °C. The ECP concentration in the sweetening gel and the added gel concentrations in the CM are shown on the X and Y axes, respectively. (Credit: Kim Mishra et al., Nature Food, 2024)

It’s hard to imagine a world without chocolate, and yet it is undeniable that there are problems associated both with its manufacturing and its consumption. Much of this is due to the addition of sugar, as well as the discarding of a significant part of the cacao pod, which harbors the pulp and seeds. According to a study by [Kim Mishra] and colleagues in Nature Food, it might be possible to ditch the sugar and instead use a mixture of cacao pulp juice (CPJC) and endocarp powder (ECP), which are turned into a sweetening gel.

This gel replaces the combination of sugar with an emulsifier (lecithin or something similar) in current chocolate while effectively using all of the cacao pod except for the husk. A lab ran a small-scale production, with two different types of whole-fruit chocolate produced, each with a different level of sweetness, and given to volunteers for sampling. Samples had various ECP ratios in the gel and gel ratios in the chocolate mixture with the cacao mass (CM).

With too much of either, the chocolate becomes crumbly, while with too little, no solid chocolate forms. Eventually, they identified a happy set of ratios, leading to the taste test, which got an overall good score in terms of chocolate taste and sweetness. In addition to being able to skip the refined sugar addition, this manufacturing method also cuts out a whole supply chain while adding significantly more fiber to chocolate. One gotcha here is that this study focused on dark chocolate, but then some chocolate fans would argue vehemently that anything below 50% cacao doesn’t qualify as chocolate anymore, while others scoff at anything below 75%.

Matters of taste aside, this study shows a promising way to make our regular chocolate treat that much healthier and potentially greener. Of course, we want to know how it will print. Barring that, maybe how it engraves.

Twelve pink tentacles are wrapped around a small, green succulent plant. The leaves seem relatively undisturbed. They are dangling from brass and white plastic pressure fittings attached to a brass circle.

Tentacle Robot Wants To Hold You Gently

Human hands are remarkable pieces of machinery, so it’s no wonder many robots are designed after their creators. The amount of computation required to properly attenuate the grip strength and position of a hand is no joke though, so what if you took a tentacular approach to grabbing things instead?

Inspired by ocean creatures, researchers found that by using a set of pneumatically-controlled tentacles, they could grasp irregular objects reliably and gently without having to faff about with machine learning or oodles of sensors. The tentacles can wrap around the object itself or intertwine with each other to encase parts of an object in its gentle grasp.

The basic component of the device is 12 sections “slender elastomeric filament” which dangle at gauge pressure, but begin to curl as pressure is applied up to 172 kPa. All of the 300 mm long segments run on the same pressure source and are the same size, but adding multiple sized filaments or pressure sources might be useful for certain applications.

We wonder how it would do feeding a fire or loading a LEGO train with candy? We also have covered how to build mechanical tentacles and soft robots, if that’s more your thing.

Continue reading “Tentacle Robot Wants To Hold You Gently”

A Slice Of Simulation, Google Sheets Style

Have you ever tried to eat one jelly bean or one potato chip? It is nearly impossible. Some of us have the same problem with hardware projects. It all started when I wrote about the old bitslice chips people used to build computers before you could easily get a whole CPU on a chip. Bitslice is basically Lego blocks that build CPUs. I have always wanted to play with technology, so when I wrote that piece, I looked on eBay to see if I could find any leftovers from this 1970-era tech. It turns out that the chips are easy to find, but I found something even better. A mint condition AM2900 evaluation board. These aren’t easy to find, so the chances that you can try one out yourself are pretty low. But I’m going to fix that, virtually speaking.

This was just the second potato chip. Programming the board, as you can see in the video below, is tedious, with lots of binary switch-flipping. To simplify things, I took another potato chip — a Google Sheet that generates the binary from a quasi-assembly language. That should have been enough, but I had to take another chip from the bag. I extended the spreadsheet to actually emulate the system. It is a terrible hack, and Google Sheets’ performance for this sort of thing could be better. But it works.

Continue reading “A Slice Of Simulation, Google Sheets Style”

Hackaday Podcast Episode 269: 3D Printed Flexure Whegs, El Cheapo Bullet Time, And A DIY Cell Phone Sniffer

This week, it was Kristina’s turn in the hot seat with Editor-in-Chief Elliot Williams. First up in the news — the results are in for the 2024 Home Sweet Home Automation contest! First and second place went to some really gnarly, well-documented hacks, and third went to the cutest pill-dispensing robot you’ll probably see before you hit the retirement home. Which was your favorite? Let us know in the comments.

A collection of multimeter probe extenders from Radio Shack.
Kristina’s lil’ wallet of extender probes, courtesy of Radio Shack.

Then it’s on to What’s That Sound. Kristina failed once again, but you will probably fare differently. Can you get it? Can you figure it out? Can you guess what’s making that sound? If you can, and your number comes up, you get a special Hackaday Podcast t-shirt.

Then it’s on to the hacks, beginning with a DIY cell phone sniffer and a pen that changed the world. Then we talk bullet time on a budget, the beautiful marriage of 3D printing and LEGO, and, oh yes, flexure whegs. Finally, we get the lowdown on extender probes, and posit why it’s hard to set up time zones on the Moon, relatively speaking.

Check out the links below if you want to follow along, and as always, tell us what you think about this episode in the comments!

Download and savor at your leisure.

Continue reading “Hackaday Podcast Episode 269: 3D Printed Flexure Whegs, El Cheapo Bullet Time, And A DIY Cell Phone Sniffer”

Illustrated Kristina with an IBM Model M keyboard floating between her hands.

Keebin’ With Kristina: The One With The Pocket Cyberdeck

When you find something you love doing, you want to do it everywhere, all the time. Such is the case with [jefmer] and programming. The trouble is, there is not a single laptop or tablet out there that really deals well with direct sunlight. So, what’s a hacker to do during the day? Stay indoors and suffer?

Image by [jefmer] via Hackaday.IO
The answer is a project like Pocket Pad. This purpose-built PDA uses a Nice! Nano and a pair of two very low-power ST7302-driven monochrome displays. They have no backlight, but they update much faster than e-paper displays. According to [jefmer], the brighter the ambient light, the more readable the displays become. What more could you want? (Besides a backlight?)

The miniature PocketType 40% is a little small for touch typing, but facilitates thumbs well. [jefmer] added those nice vinyl transfer legends and sealed them with clear nail polish.

All of the software including the keyboard scanner is written in Espruino, which is an implementation of JavaScript that targets embedded devices. Since it’s an interpreted language, [jefmer] can both write and execute programs directly on the Pocket Pad, using the bottom screen for the REPL. I’d sure like to have one of these in my pocket!
Continue reading “Keebin’ With Kristina: The One With The Pocket Cyberdeck”

Ford Patent Wants To Save Internal Combustion

There’s no doubt the venerable internal combustion engine is under fire. A recent patent filing from Ford claims it can dramatically reduce emissions and, if true, the technology might give classic engines a few more years of service life, according to [CarBuzz].

The patent in question centers on improving the evaporative emission system’s performance. The usual evaporative emission system stores fuel fumes in a carbon-filled canister. The canister absorbs fuel vapor when under high pressure. When the engine idles and pressure in the cylinder drops, the canister releases fumes, which are combusted with ordinary fuel/air mixture.

Continue reading “Ford Patent Wants To Save Internal Combustion”

That’s A Lot Of Building Systems

The only thing makers like more than building things is making systems to build things. [Eric Hunting] has compiled a list of these modular building systems.

You’ve certainly heard of LEGO, grid beam, and 80/20, but what about Troxes or Clickaloo? The 70 page document has a helpful index at the beginning arranged in families of similar systems followed by information about each and some helpful links.

As the well-known XKCD comic likes to point out, the issue with standards is that they tend to proliferate instead of getting adopted, so this might be a good list to check before you start to implement your brilliant spin on modular construction. It’s possible the right system is already waiting for you.

The list certainly isn’t exhaustive, but it’s a good place to start. If you do have the modular building system that will solve all the world’s problems though, by all means, send it to the tipsline!