Join Hackaday At MakeIt NYC This Thursday

New York is coming on strong as a hardware epicenter — exciting hardware culture can be found at every turn. Tomorrow, we’re bringing food and fun to one such event, the monthly MakeIt NYC meetup.

MakeIt is hosted by PCB.ng, a Brooklyn based PCB manufacturer and board stuffer whose mission it is to make electronics manufacturing available to everyone. [Sophi Kravitz] will be on hand and speaking about Hackaday.io and the Hackaday Prize. There are many other talks lined up, including The LED Artist (amazing work if you haven’t seen), Microchip who will show off their new Chip-KIT Wi-Fire,  Thimble (an electronics subscription service delivering monthly hardware kits), and Botfactory’s Squink, a desktop electronics manufacturing machine.

In addition to the planned talks we’re always interested in seeing the projects you’re working on. Bring along anything that fits in a pocket or a backpack. We’ll see you there!

FAA Rescinds Drone Ban Around DC

Late last year, the FAA expanded a Special Flight Rule Area (SFRA) that applied to Unmanned Aerial Systems, drones, and RC airplanes around Washington DC. This SFRA was created around the year 2000 – for obvious reasons – and applies to more than just quadcopters and airplanes made out of foam. Last December, the FAA expanded the SFRA from 15 nautical around a point located at Reagan National to 30 nautical miles. No remote-controlled aircraft could fly in this SFRA, effectively banning quadcopters and drones for six million people.

Today, the FAA has rescinded that ban bringing the area covered under the Washington DC SFRA to 15 nautical miles around a point inside Reagan National. This area includes The District of Columbia, Bethesda, College Park, Alexandria, and basically everything inside the beltway, plus a mile or two beyond. Things are now back to the way they were are few weeks ago.

The 30-mile SFRA included a number of model flying clubs that were shuttered because of the ban. DCRC is now back up. The Capital Area Soaring Association worked with the FAA and AMA to allow club members to fly.

Of course, limitations on remote-controlled aircraft still exist. For the most part, these are rather standard restrictions: aircraft must weigh less than 55 pounds, fly below 400 feet line of sight, and must avoid other aircraft.

Remote-Controlled Eyebrows For Your Birthday

We’re not sure that [Alec]’s dad actually requested remote-controlled eyebrows for his birthday, but it looks like it’s what he got! As [Alec] points out, his father does have very expressive eyebrows, and who knows, he could be tired of raising and lowering them by himself. So maybe this is a good thing? But to us, it still looks a tiny bit Clockwork Orange. But we’re not here to pass judgement or discuss matters of free will. On to the project. (And the video, below the break.)

20160208_105209

An ATmega328 (otherwise known as cheap Cloneduino Alec wrote that the 328 was from a real Arduino) is trained to run motors in response to IR signals. An L293D and a couple of gear motors take care of the rest. Sewing bobbins and thread connect the motors to the eyebrows. And while it’s not entirely visible in the photo, and veers back into not-sure-we’d-do-this-at-home, a toothpick serves as an anchor for the thread and tape, secured just underneath the ‘brows for maximum traction.

We have to say, we initially thought it was going to be a high-voltage muscle-control hack, and we were relieved that it wasn’t.

Continue reading “Remote-Controlled Eyebrows For Your Birthday”

Experiments With A Bowden Extruder Filament Force Sensor

We were excited to learn that someone had started working with force sensors on filament extruders, especially after we posted about a recent development in filament thickness sensors.

[airtripper] primarily uses a Bowden extruder, and wanted to be a little more scientific in his 3D printing efforts. So he purchased a force sensor off eBay and modified his extruder design to fit it. Once installed he could see exactly how different temperatures, retraction rates, speed, etc. resulted in different forces on the extruder. He used this information to tune his printer just a bit better.

More interesting, [airtripper] used his new sensor to validate the powers of various extruder gears. These are the gears that actually transfer the driving force of the stepper to the filament itself. He tested some of the common drive gears, and proved that the Mk8 gear slipped the least and provided the most constant force. We love to see this kind of science in the 3D printing community — let’s see if someone can replicate his findings.

 

StickerBOM For KiCad

When boards were larger and components mostly through hole, designers could put a lot of information on the silk legend – reference designator, values, additional text and so on. But with surface mount components becoming smaller and board real estate at a premium, modern boards do not have a lot of information marked on the silk layer. If you are building and distributing a short run of kits, perhaps for a round of beta testing, then [Adam Greig]’s StickerBOM python script for KiCad can be really handy. StickerBOM is a KiCad BOM exporter designed for people stuffing boards by hand. It generates a PDF for printable sticky labels, where each label reflects one BOM line from a supplier. You then stick these labels on the bags from your supplier, and they show you where the parts go.

The labels get printed with the reference designator, quantity, component value, package, vendor and part number. It also adds a drawing of the PCB with the relevant parts highlighted for easy location identification. To use it, schematic symbols must have the supplier field and part number added. The script can be run from the command line, or from the BOM manager in eeschema. The script is set up for Avery L7164 labels, but this setting can be changed. It’s still work in progress so there’s a couple of bugs to be aware of. It cannot process the bottom layer of the board, and the result is only as good as the data you provide. And if you have a large board with components spread all over, the resultant graphic printed on the label may not be ideal.

We are hoping this, and other scripts such as the Part generator and Cost spreadsheets or the script for mechanical CAD export, get added to future releases of KiCad. The KiCad version 5 Developer’s road map document already has some really nice feature additions in the works.

Constant Innovation And Useless Ducks

[Mike]’s hacks aren’t breathtaking in their complexity, but they got a good chuckle out of us. [Mike], the CEO of The Useless Duck Company, lives in a hub of innovation somewhere in Canada, where he comes up with useful gadgets such as a Fedora that tips itself, or a door that locks when you’re shopping for gifts for your wife and you’re in incognito mode.

It all started when he was trying to learn the Arduino, and he put quite a few hours into making a device that could wirelessly squeak a rubber bath duck from the bathroom. The whole project reminded us of our first clumsy forays into the world of electronics, with entirely too many parts to complete a simple function. The Arduino being the gateway drug it is, it wasn’t long before he was building a bartending robot.

We hope he continues to construct more entertaining gadgets.

Continue reading “Constant Innovation And Useless Ducks”

Giving WiFi To An Apple Newton

The Apple Newton gets a bad rap, partly because of the bad handwriting recognition of the first version of the firmware, and mostly because Steve Jobs hated it. Those who know of the Newton love the Newton; it has an exceptionally well-designed interface, the handwriting recognition is great with updated firmware.

[Jake] has the king of the Newtons – a MessagePad 2100. There’s a hidden port in this machine for a modem card, but Apple never made one. While other Newton aficionados trudge along with old PCMCIA WiFi cards that only support 802.11a without WPA2, [Jake] thought it would be possible to build a modern WiFi card for the Newton. He succeeded, opening the door to modern networking apps on the finest tablet Apple will ever make.

Oddly, this isn’t [Jake]’s first attempt at expanding the capabilities of his Newton. There’s an internal serial port inside the MessagePad 2×00, and a few years ago [Jake] tried to build an internal Bluetooth card. The RF design didn’t work, but with a few more years of experience, [Jake] figured he had the skills for the job.

The critical piece of hardware for this build isn’t an ESP8266 or other common WiFi module. Instead, a WiReach module from ConnectOne was used for the built-in PPP server. This allows legacy hardware to use standard AT modem commands to access a WiFi network. It’s a very interesting module; there is a lot of hardware out there that speaks PPP natively, and a module like this could be a drop-in replacement for a modem.

That said, thanks to unintelligible and ‘Apple Classified’ documentation, getting this card working wasn’t easy. The APIs to access the internal serial slot were never documented, and it took a bit of time with a disassembler to figure out how to address the port correctly.

[Jake] has pushed all the files for his project up to Github. This includes the design files for the PCB, the Newton software that enables WiFi, and a nifty 3D printed port cover that shows off the new wireless capabilities of Apple’s greatest tablet.