Apart from the harmonic drive, the engineering community hasn’t really come up with any clever mechanisms for speed-to-torque conversion in the last few decades. However, recently a few folks at SRI have given us one more transmission to drool over: the Abacus Drive.
The Abacus Drive takes the standard concepts of a cycloidal drive, but takes the eccentric gear tooth pattern that we’re familiar with and converts it to two grooves in which an array of rolling spacers will ride. The benefit with this design is two-fold: it’s both constructed from entirely rigid components (unlike the harmonic drive), and it has a low-backdriving torque, enabling the application to more easily detect changes in load.
Achieving an affordable low-speed, high-torque transmission has been a holy grail among roboticists, where every motor-driven manipulator joint becomes an engineering design headache where the designers fight their application’s backlash, torque, and price constraints to get a functional robot arm. This problem stems from the fact that motors just don’t perform efficiently at low-speeds, where the near-stall conditions cause them to draw vastly larger amounts of torque compared to their full-speed conditions. While the Abacus Drive isn’t hitting the market anytime soon, we’ll let this idea stew in the community and hope to see some budget variants pop up in the near future.
Continue reading “Abacus Drive Is A Speed-to-Torque Game-Changer”




Each digit is made using one pair of Neopixel rings, stacked to form a figure of eight. All the digits are composed of arcs, so readability isn’t the best but it’s not hard either. [rhoalt] does mention that the display is easier to read via blurred camera images rather than visually, which isn’t surprising. We’re long used to seeing numbers composed of straight line segments, so arc segmented digits do look weird. But we wouldn’t have known this if [rhoalt] hadn’t shown us, right ? Maybe a thicker diffuser with separator baffles may improve the readability.


