ITER Dreams And The Practical Reality Of Making Nuclear Fusion Work On Earth

Doing something for the first time is tough. Yet to replicate the nuclear fusion process that powers the very stars, and do it right here on Earth in a controlled and sustained fashion is decidedly at the top of the list of ‘tough’ first times. What further complicates matters is when in order to even get to this ‘first’ you also add in a massive, international construction project and a heaping of geopolitics, all of which is a far cry from past nuclear fusion experiments.

With the International Thermonuclear Experimental Reactor (ITER) as the most visible part of nuclear fusion research, it is perhaps little wonder that the recent string of delays and budget increases is leading some to proclaim doom and gloom over the entire sector. This ironically in contrast with the recent news from the US’s NIF and its laser-based inertial confinement fusion, which is both state-funded and will never produce commercial power.

In light of this, it feels pertinent to ask the question of whether ITER is the proverbial white elephant, or even the mausoleum of international science that a recent article in Scientific American makes it out to be. Is fusion research truly doomed to peter out amidst the seemingly never-ending work on ITER?

Continue reading “ITER Dreams And The Practical Reality Of Making Nuclear Fusion Work On Earth”

Miners Vs NASA: It’s A Nevada Showdown

Mining projects are approved or disapproved based on all kinds of reasons. There are economic concerns, logistical matters, and environmental considerations to be made. Mining operations can be highly polluting, or they can have outsized effects on a given area by sheer virtue of the material they remove or the byproducts they leave behind.

For a proposed lithium mining operation north of Las Vegas, though, an altogether stranger objection has arisen. NASA has been using the plot of land as a calibration tool, and it doesn’t want any upstart miners messing with its work. 

Continue reading “Miners Vs NASA: It’s A Nevada Showdown”

System Essentially Contradicting American Methods

Today, acronyms such as PAL and initialisms such as NTSC are used as a lazy shorthand for 625 and 525-line video signals, but back in the days of analogue TV broadcasting they were much more than that, indeed much more than simply colour encoding schemes. They became political statements of technological prowess as nations vied with each other to demonstrate that they could provide their citizens with something essentially home-grown. In France, there was the daddy of all televisual symbols of national pride, as their SECAM system was like nothing else. [Matt’s TV Barn] took a deep dive into video standards to find out about it with an impressive rack of test pattern generation equipment.

At its simplest, a video signal consists of the black-and-while, or luminance, information to make a monochrome picture, along with a set of line and frame sync pulses. It becomes a composite video signal with the addition of a colour subcarrier at a frequency carefully selected to fall between harmonics of the line frequency and modulated in some form with the colour, or chrominance, information. In this instance, PAL is a natural progression from NTSC, having a colour subcarrier that’s amplitude modulated and with some nifty tricks using a delay line to cancel out colour shifting due to phase errors.

SECAM has the same line and frame frequency as PAL, but its colour subcarrier is frequency modulated instead of amplitude modulated. It completely avoids the NTSC and PAL phase errors by not being susceptible to them, at the cost of a more complex decoder in which the previous line’s colour information must be stored in a delay line to complete the decoding process. Any video processing equipment must also, by necessity, be more complex, something that provided the genesis of the SCART audiovisual connector standard as manufacturers opted for RGB interconnects instead. It’s even more unexpected at the transmission end, for unlike PAL or NTSC, the colour subcarrier is never absent, and to make things more French, it inverted the video modulation found in competing standards.

The video below takes us deep into the system and is well worth a watch. Meanwhile, if you fancy a further wallow in Gallic technology, peer inside a Minitel terminal.

Continue reading “System Essentially Contradicting American Methods”

Exploring A New Frontier: Desktop EDM Is Coming

To say that desktop 3D printing had a transformative effect on our community would be something of an understatement. In just a decade or so, we went from creaky printers that could barely extrude a proper cube to reliable workhorses that don’t cost much more than a decent cordless drill. It’s gotten to the point that it’s almost surprising to see a project grace these pages that doesn’t include 3D printed components in some capacity.

Cooper Zurad

There’s just one problem — everything that comes out of them is plastic. Oh sure, some plastics are stronger than others…but they’re still plastic. Fine for plenty of tasks, but certainly not all. The true revolution for makers and hackers would be a machine that’s as small, convenient, and as easy to use as a desktop 3D printer, but capable of producing metal parts.

If Cooper Zurad has his way such a dream machine might be landing on workbenches in as little as a month, thanks in part to the fact that its built upon the bones of a desktop 3D printer. His open source Powercore device allows nearly any 3D printer to smoothly cut through solid metal using a technique known as electrical discharge machining (EDM). So who better to helm this week’s Desktop EDM Hack Chat?

Continue reading “Exploring A New Frontier: Desktop EDM Is Coming”

Gearing Up With The 2023 Hackaday Prize

You know how it goes. You’re working on a project, and you need to do some ultra-precise probing, so you end up making a custom PCB probing octopus along the way. Or you find that you spend more time making the jig to hold down a part for machining than you do machining it. Hackers are not merely a tool-using species, we’re a tool-making species – it’s in our nature to want to build the tools that make it easier to get the job done.

The Gearing Up round of the Hackaday Prize celebrates the tool makers. If you’ve got a project that maybe isn’t an end in itself, but rather one of those utility project that can make all the difference, we want to see it here. Maybe it’s obscure measurement gear, maybe it’s a test rig or a bolt sorter, maybe you’ve built your own reflow hot plate. This is the challenge round for you!

The Gearing Up round runs from yesterday, July 4th, until August 8th. As with all of the 2023 Hackaday Prize rounds, ten finalists will receive $500 and get entered for the big prizes to be announced in November. Continue reading “Gearing Up With The 2023 Hackaday Prize”

Remote Driving Controversial In UK, But It’s Already Here

The automotive industry is rushing towards autonomous vehicles as a futuristic ideal. They haven’t got the autonomous part sorted just yet. However, as part of this push, the technology to drive vehicles remotely via video link has become mature.

In the United Kingdom, there has been great controversy on whether this should be allowed, particularly for vehicles piloted by individuals outside the country’s borders. That came to a head with a Law Commission repot published earlier this year, but since then, innovative companies have continued to work on remote driving regardless. Let’s dive in to the current state of play.

Continue reading “Remote Driving Controversial In UK, But It’s Already Here”

A Dusty Boat Anchor Back From The Brink

Many of us will have found dusty forgotten pieces of electronics and nursed them back to health, but we were captivated by [Don]’s tale of electronic revival. Instead of perhaps a forgotten computer or television, his barn find was a Heathkit linear amplifier for radio amateurs. In that huge box underneath an impressive layer of grime were a pair of huge tubes, along with all the power supply components to give them the 2 kV they need. It should have been good for a kilowatt when new, can it be made to go on air again?

Perhaps understandably with such an old device, after cleaning away the dust of ages he replaced the power supply circuitry with new parts and PCBs. A linear amplifier is surprisingly simple, but because of the voltages and power concerned there’s a need to treat its power circuits with respect. On first power-up the filaments work and the rails come up, so when given some RF drive it comes alive. Coupled with a case restoration you’d never know how dreadful a state it had been in.

We like to see classic Heathkit devices here at Hackaday, though we’ve followed their more recent reappearance too.