2015 THP Inspiration: The Environment

It’s not as flashy as Tesla coils or electric vehicles going 200 mph, but the environment is more important than a bunch of cool baubles and sparks flying everywhere. When it comes to this year’s Hackaday Prize, you’re going to need a project that matters, and what’s a better way to do it than with something to help the environment?

While not traditionally a domain that rocks people’s socks, there are a lot of cool builds that can help the environment like this hyperspectral imager that’s a mashup of a spectrometer and a camera, or something that takes an image of an object, complete with the spectral data of each pixel. It’s useful for everything from farming, to forestry, to medicine.

aquaponicsPerhaps you want to get your hands messy by mucking about in the dirt. You’ll probably find something interesting to build for this year’s Hackaday Prize, like the modular farmer’s market we saw in Detroit last year. How about an urban farming and aquaponics setup? Tilapia do well in giant buckets, you know.

If robots are more your speed, then how about an RC tractor or an entire robotic farm? You could always eradicate invasive plants with a quadcopter if flying around is more suited to your expertise. There are plenty of ways to do something that matters for this year’s Hackaday prize, but we’d be lying if we had all the answers. That’s where you come in with your entry for The Hackaday Prize.

2015 THP: Judges And Sponsors

And now it’s time to recognize a big part what makes the Hackaday Prize possible: our Judges and our Sponsors. First up are the Judges. We are fortunate again this year to be joined by top experts from around the world. We are going to briefly touch on each in this post, but you really should hit the Judge’s page for bios and links on everyone.

New Judges in 2015

We have seven judges new to the panel this year:

We love seeing a project pic used as an avatar and [Akiba] of freaklabs didn’t disappoint; we covered that project in 2013. [Pete Dokter], known well for According to Pete, joins us from Sparkfun. [Lenore Edman] and [Windell Oskay] are the force behind Evil Mad Scientist Labs. [Heather Knight] of Marilyn Monrobot is finishing her PhD in Robots at Carnegie Mellon. [Ben Krasnow] should need no introduction; formerly of Valve, currently of Google[x], and always of Applied Science. [Micah Scott] is artist/engineer/hacker and her Blu-Ray drive RE work is among our most favorite of 2014 hacks.

Returning Judges

Five of our friends from the 2014 Hackaday Prize are returning this year:

We have a hard time calling the founder of Adafruit anything other than [Ladyada] but you may know her as [Limor Fried]. The hardware design site The Ganssle Group is spearheaded by [Jack Ganssle]. You know [Dave Jones] from his electronics design and reverse engineering videos on EEVblog and also from the Amp Hour podcast. [Ian Lesnet] is a Hackaday alum, creator of Dangerous Prototypes, and expert regarding manufacturing in China. And finally, [Elecia White] is an extraordinary embedded engineer, founder of Logical Elegance, and the Embedded podcast.

Welcome back, and so happy to have the new Judges this year!

2015 Hackaday Prize Sponsors

sponsor-whitebg-800

The 2015 Hackaday Prize is presented by Supplyframe (parent company of Hackaday). This year we have added five giants of the hardware world as sponsors. We don’t recall having seen so many major players come together for a single initiative. We’re excited that they share our vision of supporting design initiatives. Please thank them by following their Hackaday.io pages: Atmel, Freescale Semiconductor, Microchip, Mouser Electronics, and Texas Instruments. Thank you sponsors!

The Making Of The Hackaday Prize Video

As you’re probably aware, there’s a video announcing the launch of The Hackaday Prize blocking the front page of Hackaday right now. This is by design, and surprisingly we haven’t gotten any complaints saying, ‘not a hack’ yet. I’m proud of you. Yes, all of you.

Making this video wasn’t easy. The initial plans for it were something along the lines of the new Star Wars trailer. Then we realized we could do something cooler. The idea still had Star Wars in it, but we were going for the classics, and not the prequels. As much as we love spending two hours watching a movie about trade disputes, we needed to go to Tatooine.

QV4A4035I just wanted to go to Toshi station

This meant building a prop. We decided on the moisture vaporators from Uncle Owen’s farm. It’s a simple enough structure to build at the Hackaspace in a weekend, and could be broken down relatively easily for transport to the shooting site. I’ve created a hackaday.io project for the actual build, but the basic idea is a few pieces of plywood, an iron pipe for the structural support, and some Coroplast and spray paint to make everything look like it’s been sitting underneath two suns for several decades.

Oh, I was the only person at the hackaspace that knew what greebles were. That’s not pertinent in any way, I’d just like to point that out.

The Suit

The vaporator is the star of the show, but we also rented a space suit. No one expected teflon-covered beta cloth when we were calling up costume rental places, but the suit can really only be described as a space-suit shaped piece of clothing. The inlet and outlet ports are resin, and the backpack is a block of foam. If anyone knows where we can get an Orlan spacesuit, or even a NASA IVA or Air Force high altitude suit, let us know.

Credits

[Matt Berggren] led the prop build and starred in the assembly footage. [Aleksandar Braic] and [Rich Hogben] rented a ridiculous amount of camera equipment. On set for the hijinks was [Aleksandar “Bilke” Bilanovic], [Brian Benchoff] (me), [Jasmine Bracket], [Sophi Kravitz], and [Mike Szczys].

2015 THP Inspiration: Medical Hacks

Last year’s Hackaday Prize focused on building something cool, useful, and open. This led to builds as impressive as quadcopters nicknamed the Decapitron, to devices as useful as an Everything Radio. It’s a big field, and if you want to build something that will win, you first need an idea.

This year we’re making that part of the process a little easier for you. We’re looking for builds that matter, be they devices that monitor pollution, feed entire populations, lay the groundwork for powering an entire city, or reduce the cost and increase access to medical care.

pillminderMedical builds are a tricky subject, but over the years we’ve seen a few that stand out. Some can be as simple as a pill dispenser that tells the Internet when you don’t take your meds. This type of build is actually pretty popular with several iterations, one that works with pill bottles.

Maybe a gadget you could find in a drug store isn’t your thing. That’s okay, instead you can turn your attention to advanced medical imaging, like 3D printing a brain tumor and preventing a misdiagnosis. We’ve seen 3D printed MRI and CT scans for a while now, and coming up with a system that automates the process would be a great entry for the Hackaday prize.

prosOf course with 3D printers, you have a bunch of prosthesis applications; from a nine-year-old who designed his own prosthetic arm, a printed prosthetic arm for a stranger, or something simpler like our own [Bil Herd]’s quest to rebuild a finger.

These are all simple builds, but ones that clearly meet the criteria of doing something meaningful. The sky is the limit, and if you want to improve the desktop CT scanner, learn CPR (correctly) from an automated assistant, or be brought back to life with your own design, that’s all well within the goals of this year’s Hackaday Prize.

2015 Hackaday Prize: Build Something That Matters

Last year we challenged you to build the next generation of connected devices. Six months later, the best teams and projects from around the world battled for the greatest prize of all: the respect of their peers and a trip to space. This year, we’re issuing a call to hackers, engineers, makers and startups from all over the world, to focus their creative efforts on nothing less than solving serious issues facing humanity.

Fix the World

thp2015-build-something-that-matters-a6We’ll all be facing a lot of problems in the next few decades, whether they’re from rising costs and consumption of oil, droughts, access to food, demographic shifts in populations, or increasing health care costs. These problems need to be dealt with, and there’s no better time than right now to start working on solutions.

What do we want from you? We want you to identify the greatest problems faced by humanity in the next few years and come up with a solution. This can be anything from better, lower-cost solar power components, inexpensive ultrasound machines, better ways to store drugs, more advanced ways of measuring farm production, or cheaper, more sustainable smartphones to bridge the digital divide. The world is full of problems, but if there’s one thing hackers have taught us, it’s that there are more than enough people willing to find solutions.

Prizes

If worldwide notoriety isn’t enough personal incentive, Hackaday is back with a huge slate of prizes for those devices that best exemplify solutions to problems that matter.

The Grand Prize is a trip to space on a carrier of your choice or $196,883 (a Monster Group number). Other top prizes include a 90-Watt laser cutter, a builder kit (pcb mill, 3d printer, cnc router, bench lathe), a tour of CERN in Geneva, and a tour of Shenzhen in China.

New this year is the Best Product award. Go the extra mile and show a production-ready device (in addition to supplying three beta test units for judging) and you can score $100,000! The entry is of course still eligible to compete for the Grand prize and other top prizes.

We’re able to pull this off once again thanks to the vision of Supplyframe who managed to unite giants of the electronics industry as sponsors of the 2015 Hackaday Prize. Atmel, Freescale, Microchip, Mouser, and Texas Instruments have all signed on in supporting this mission.

Individuals, Colleges, Hackerspaces, and Startups

If you just don’t want to go-it alone, get your team excited. After all, it was a team that won the Grand Prize last year. SatNOGS transformed the cash-option of $196,418 into a jumpstart for a foundation to carry the project forward. Get the boss on board by touting the notoriety your company will get from showing off their engineering prowess. Or help build your resume by herding your college buddies into some brainstorming session. And the Best Product prize is perfect for Startups who want to show off their builds.

Judges

Joining the Judging Panels this year are Akiba (Freaklabs), Pete Dokter (Sparkfun), Heather Knight (Marilyn MonRobot), Ben Krasnow (GoogleX & host of Applied Science on YouTube), Lenore Edman & Windell Oskay (Evil Mad Scientist Labs), and Micah Scott (Scanlime).

Our returning judges are Limor “Ladyada” Fried (Adafruit), Jack Ganssle (Ganssle Group, & The Embedded Muse), Dave Jones (EEVBlog), Ian Lesnet (Dangerous Prototypes), and Elecia White (Logical Elegance).

You can read all of the judge bios and find social media and webpage links for them on our Judges page. We are indebted to these industry experts for sharing their time and talent to make the Hackaday Prize possible.

Tell Everyone

We don’t ask often: please tell everyone you know about the 2015 Hackaday Prize! Social media share icons are just above the image at the top of this post. Submit this page or the prize page (http://hackaday.io/prize) to all your favorite sites. No hacker should get through this day without hearing about #HackadayPrize and we can’t reach total media saturation without your help. Thanks in advance!

GET STARTED NOW

Don’t wait, put up an idea right now and tag it with “2015HackadayPrize”. We’re sending out swag for early ideas that help get the ball rolling. And as you flesh out your plans you could score prizes to help build the prototype like PCBs, 3D prints, laser cutting, etc. Make it to the finals and you’ll be looking at the five top prizes we mentioned earlier. A simple idea can change the world.

placeholder-prize-graphic

Open Source, 3D Printed Rocket Engines

A liquid-fuel rocket engine is just about the hardest thing anyone could ever build. There are considerations for thermodynamics, machining, electronics, material science, and software just to have something that won’t blow up on the test rig. The data to build a liquid engine isn’t easy to find, either: a lot of helpful info is classified or locked up in one of [Elon]’s file cabinets.

[Graham] over at Fubar Labs in New Jersey is working to change this. He’s developing an open source, 3D printed, liquid fuel rocket engine. Right now, it’s not going to fly, but that’s not the point: the first step towards developing a successful rocket is to develop a successful engine, and [Graham] is hard at work making this a reality.

This engine, powered by gaseous oxygen and ethanol, is designed for 3D printing. It’s actually a great use of the technology; SpaceX and NASA have produced 3D printed engine parts using DMLS printers, but [Graham] is using the much cheaper (and available at Shapeways) metal SLS printers to produce his engine. Rocket engines are extremely hard to manufacture with traditional methods, making 3D printing the perfect process for building a rocket engine.

So far, [Graham] has printed the engine, injector, and igniter, all for the purpose of shoving oxygen and ethanol into the combustion chamber, lighting it, and marveling at the Mach cones. You can see a video of that below, but there’s also a few incredible resources on GitHub, the Fubar Labs wiki, and a bunch of pictures and test results here.

Continue reading “Open Source, 3D Printed Rocket Engines”

Fail Of The Week : Measuring DC Current Has To Be Easy, Right?

[DainBramage] needed a DC ammeter to check how long his amateur radio station would be able to stay powered on battery backup power. The one’s he already had on hand were a Clamp Meter, which could only measure AC, and another one that measured just a few milliamps. Since he didn’t have one which could measure up to 25A, he decided to build his own DIY DC Ammeter with parts scavenged from his parts bin. Measuring DC current is not too difficult. Pass the current to be measured through a precision resistor, and measure the voltage drop across it using a sensitive voltmeter.

I = V/R

So far, so good. If it’s late at night and you’ve had a lot of coffee, busy building your DC ammeter, things could head south soon. [DainBramage]’s first step was to build a suitable Shunt. He had a lot of old, 1Ω, 10W resistors lying around. He made a series-parallel combination using nine of them to create a hefty 1Ω, 90W shunt (well, 0.999999999 Ohms if you want to be picky). This gave him a nice 1 Volt per Amp ratio, making it easy to do his measurements.

Next step was to hook up the shunt to a suitable voltmeter. Luckily, he had a Micronta voltmeter lying around, ripped out from a Radio Shack product. Since he didn’t have the voltmeter data, he hooked up a 10k resistor across the meter inputs, and slowly increased the voltage applied to the meter. At 260mV, the needle touched full-scale and the voltage across the inputs of the voltmeter was 33mV. [DainBramage] then describes the math he used to calculate the resistors he would need to have a 10A and a 25A measurement range. He misses his chance to catch the fail. His project log then describes some of the boring details of putting all this together inside a case and wrapping it all up.

A while later, his updates crop up. First thing he probably realized was that he needed more accurate readings, so he added connectors to allow attaching a more accurate voltmeter instead of the analog Micronta. At this point, he still didn’t catch the fail although it’s staring him straight in the face.

His head scratching moment comes when he tries to connect his home made ammeter in series with the 12V DC power supply to his amateur radio station. Every time he tries to transmit (which is when the Radio is drawing some current), the Radio shuts off.  If you still haven’t spotted the fail, try figuring out how much voltage gets dropped across the 1Ω shunt resistor when the current is 1A and when it is 5A or more.