2025 One Hertz Challenge: 4-Function Frequency Counter

Frequency! It’s an important thing to measure, which is why [Jacques Pelletier] built a frequency counter some time ago. The four-function unit is humble, capable, and also an entry into our 2025 One Hertz Challenge!

The build began “a long while ago when electronic parts were still available in local stores,” notes Jacques, dating the project somewhat. The manner of construction, too, is thoroughly old-school. The project case and the sweet red digits are both classic, but so is what’s inside. The counter is based around 4553 BCD counter chips and 4511 decoder ICs. Laced together, the logic both counts frequency in binary-coded decimal and then converts that into the right set of signals to drive the 7-segment displays. Sample time is either 1 Hz or 0.1 Hz, which is derived from an 8MHz oscillator. It can act as a frequency meter, period meter, chronometer, or a basic counter. The whole build is all raw logic chips, there are no microprocessors or microcontrollers involved.

It just goes to show, you can build plenty of useful things without relying on code and RAM and all that nonsense. You just need some CMOS chips and a bucket of smarts to get the job done!

Double The Sensors, Double The Fun, With 2-in-1 Panoramic Camera

When film all came in rolls, it was fairly easy to play with the frame of the image. Companies like Hasselblad (and many others) made camera backs that would expose longer strips of 35 mm film to create stunning panoramic images in one single shot. [snappiness] wanted to bring that style of camera into the digital age, and ended up with a 2-in-1 Sony-based frankencamera.

Sensors just aren’t readily available in the wide aspect ratio [snappiness] was looking for, and even if they were, bare sensors are hugely expensive compared to consumer cameras. Lacking the budget for high-res scientific CMOS, [snappiness] did what any of us would do, and hacked two Sony A7ii full-frame mirrorless cameras together to get a combined 24x72mm sensor frame.

Conceptually, the hack is really very simple: a 3D print acts like a T-fitting, with the two cameras held parallel off the arms of the T and the lens making the shaft. Inside, the only optics are a pair of mirrors serving as a beam splitter. Each camera sees half the FOV of the lens in its corresponding mirror, which means the images can be stitched together later to make the double-wide pictures [snappiness] is after.

Of course both cameras must be triggered at the same time, but with what looks like a headphone splitter and an aftermarket remote shutter button, that part works perfectly. The optics, not so much– as always with conceptually simple projects, the devil is in the details, and here it’s the mirror alignment where you’ll find Old Nick. [snappiness] made no provision for adjustments, so everything needed to be designed and built with very stringent tolerances. Somewhere along the way, those tolerances were exceeded; as a result, the two cameras don’t share a focal plane.

That means half the composite image will always be out of focus, or that the main lens needs to be refocused and two snaps taken, rather defeating the point the frankencamera. If [snappiness] attempts a version two, perhaps an adjustment mechanism to focus each sensor would be in order. Still, even if it didn’t work perfectly, he’s proven that the idea is sound, and we can’t imagine many people will see this and argue it isn’t a hack.

The world of film did make all of this easier, perhaps– we’ve seen large-format film cameras out of lego, and a panorama made from four full rolls of 35 mm film. If you know of any other great photography hacks– film or digital– don’t hesitate to send us a tip.

Continue reading “Double The Sensors, Double The Fun, With 2-in-1 Panoramic Camera”

A sine wave and triangle wave on a black background

2025 One Hertz Challenge: Op-Amp Madness

Sometimes, there are too many choices in this world. My benchtop function generator can output a sine, square, or saw wave anywhere from 0.01 Hz up to 60 MHz? Way too many choices. At least, that’s what we suspect [Phil Weasel] was thinking when he built this Analog 1 Hz Sinewave Generator.

Rendering of a PCB
A KiCad rendering of [Phil]’s design
[Phil]’s AWG (which in this case stands for Anything as long as it’s a 1 Hz sine Wave Generator) has another unique feature — it’s built (almost) entirely with op-amps. A lot of op-amps (37, by our count of the initial schematic he posted). His design is similar to a Phased Locked Loop (PLL) and boils down to a triangle wave oscillator. While a 1 Hz triangle wave would absolutely satisfy judges of the One Hertz Challenge, [Phil] had set out to make a sine wave. Using a feedback loop and some shaping/smoothing tricks (and more op-amps), he rounded off the sharp peaks into a nice smooth sine wave.

Sometimes we make things much more complicated than we need to, just to see if we can. This is one of those times. Are there much simpler ways to generate a sine wave? Yes — but not exclusively using op-amps! This entry brings stiff competition to the “Ridiculous” category of the 2025 One Hertz Challenge.

When Online Safety Means Surrendering Your ID, What Can You Do?

A universal feature of traveling Europe as a Hackaday scribe is that when you sit in a hackerspace in another country and proclaim how nice a place it all is, the denizens will respond pessimistically with how dreadful their country really is. My stock response is to say “Hold my beer” and recount the antics of British politicians, but the truth is, the grass is always greener on the other side.

There’s one thing here in dear old Blighty that has me especially concerned at the moment though, and perhaps it’s time to talk about it here. The Online Safety Act has just come into force and is the UK government’s attempt to deal with what they perceive as the nasties on the Internet, and while some of its aspirations may be honourable, its effects are turning out to be a little chilling.

As might be expected, the Act requires providers to ensure their services are free of illegal material, and it creates some new offences surrounding sharing images without consent, and online stalking. Where the concern lies for me is in the requirement for age verification to ensure kids don’t see anything the government things they shouldn’t, which is being enforced through online ID verification. There are many reasons why this is of concern, but I’ll name the three at the top of my list.
Continue reading “When Online Safety Means Surrendering Your ID, What Can You Do?”

Hexagonal Lighting Brings A Touch Of Elegance To The Workshop

Sometimes, we’re faced with what should be simple household tasks that we choose to make more difficult. Sure, you could buy a clock, hang it on your wall, and move on with your day, or could spend a week or two building the perfect one. [Nejc Koncan] was in one such situation recently when he needed some new overhead lighting. He wanted hexagonal lights — and since none of the off-the-shelf solutions met his exacting requirements, he built his own.

Unlike most of the cycling RGB hexagonal lighting solutions available on the market, [Nejc] wanted elegant white outlines that he could control via HomeAssistant. After some careful design and quite a bit of trial-and-error, he ended up with a highly modular and very professional-looking installation. The hexagons are constructed from LED strips set into aluminum extrusions, with junction PCBs at each intersection. To complete the look, all of the strips and wiring are hidden by diffusers that slot into the extrusions — and of course, the whole thing is open source.

We see lots of lighting projects here at Hackaday, and even other hexagonal lights — but this might just be one of the most refined. Sometimes it’s worth the extra effort to build a totally over-engineered custom solution.

Hands On: The Hacker Pager

It should come as no surprise that the hacker community has embraced the Meshtastic project. It’s got a little bit of everything we hold dear: high quality open source software, fantastic documentation, a roll-your-own hardware ethos, and just a dash of counterculture. An off-grid communications network cobbled together from cheap parts, some of which being strategically hidden within the urban sprawl by rogue operators, certainly sounds like the sort of thing you’d read about it in a William Gibson novel.

But while the DIY nature of Meshtastic is one of its most endearing features for folks like us, it can also be seen as one of its weak spots. Right now, the guidance for those looking to get started is to pick a compatible microcontroller development board, 3D print a case for it, screw on an antenna from AliExpress, flash your creation with the latest firmware, and then spend some quality time with the documentation and configuration tools to actually get it on the air. No great challenge for the average Hackaday reader, but a big ask for the weekend adventurer that’s just looking for a way to keep in touch with their friends while camping.

Quality hardware that offers a turn-key experience will be critical to elevating Meshtastic from a hobbyist’s pastime to something that could actually be fielded for applications such as search and rescue. Plus, let’s be honest, even those of us who like to put together our own gadgets can appreciate a more consumer-oriented piece of hardware from time to time. Especially if that hardware happens to be open source and designed to empower the user rather than hold them back.

Enter the Hacker Pager from exploitee.rs. As the name implies, it’s still very much a device intended for hackers — a piece of hardware designed for the halls of DEF CON rather than trekking through the wilderness. But it’s also an important step towards a new generation of Meshtastic hardware that meets the high standard of quality set by the software itself.

Continue reading “Hands On: The Hacker Pager”

Farewell Shunsaku Tamiya: The Man Who Gave Us The Best Things To Build

In the formative experiences of most Hackaday readers there will almost certainly be a number of common threads, for example the ownership of a particular game console, or being inspired into engineering curiosity by the same TV shows. A home computer of a TV show may mark you as coming from a particular generation, but there are some touchstones which cross the decades.

Of those, we are guessing that few readers will not at some point have either built, owned, or lusted after a Tamiya model kit at some point over the last many decades, so it’s with some sadness that we note the passing of Mr. Tamiya himself, Shunsaku Tamiya, who has died at the age of 90.

Continue reading “Farewell Shunsaku Tamiya: The Man Who Gave Us The Best Things To Build”