3D Printed Basketball Could Be A Game Changer

Basketball has changed a lot over the years, and that goes for the sport as well as the ball itself. While James Naismith first prescribed tossing soccer balls into peach baskets to allow athletes to stay in shape over the winter, today, the sport looks quite different both rule-wise and equipment-wise.

An early basketball. Image via Wikipedia

The basketball itself has gone through a few iterations. After the soccer ball came a  purpose-built leather ball with stitches and a rubber bladder inside. The first molded version came in 1942, although most balls continued to be made of leather, especially for indoor-only use. Today, the NBA still uses leather-clad balls, but that could change. Wilson, the official supplier of NCAA postseason tournament balls, has developed a 3D-printed basketball that never needs to be inflated.

Much like a regular ball, the Wilson Airless Gen1 has eight lobes, bounces like you’d expect, and can be palmed, provided your hand is big enough. We would argue forcefully that it is far from airless, though we do get the point. According to TCT Magazine, the ball “nearly fits” the performance specs of a regular basketball, including weight, size, and rebound. This may not be good enough for the NBA today, but we doubt innovation over at Wilson has stopped abruptly, so who knows what the future holds?

Interested in trying one out? You may be better off trying to design and print one yourself. The limited-edition ball will be available on February 16th at Wilson.com for the low, low price of $2,500. It would probably pair well with the can’t-miss robotic hoop. Or, pair it with a giant 3D-printed hand for display purposes.

Main and thumbnail images via Wilson Sporting Goods

One Project At A Time, Or A Dozen?

We got a bunch of great food for thought in this week’s ask-us-anything on the Hackaday Podcast, and we all chewed happily. Some of my favorite answers came out of the question about how many projects we all take on at once. Without an exception, the answer was “many”. And while not every one of the projects that we currently have started will eventually reach the finish line, that’s entirely different from saying that none of them ever do. On the contrary, Tom Nardi made the case for having a number of irons simultaneously in the fire.

We all get stuck from time to time. That’s just the nature of the beast. The question is whether you knuckle down and try to brute-force power your way through the difficulty, or whether you work around it. A lot of the time, and this was Dan Maloney’s biggest bugaboo, you lack the particular part or component that you had in mind to get the job done. In that situation, sometimes you just have to wait. And what are you going to do while waiting? Work on Project B! (But take good notes of the state of Project A, because that makes it a lot easier to get back into the swing of things when the parts do arrive.)

Al and I both weighed in on the side of necessity, though. Sometimes, no matter how many attractive other projects you’ve got piled up, one just needs to get out the door first. My recent example was our coffee roaster. Before I start a big overhaul, I usually roast a couple days’ worth of the evil bean. And then the clock starts ticking. No roasting equals two unhappy adults in this household, so it’s really not an option. Time pressure like that helps focus the mind on the top-priority project.

But I’m also with Tom. It’s a tremendous luxury to have a handful of projects in process, and be able to hack on one simply because you’re inspired, or in love with the project at that moment. And when the muse calls, the parts arrive, or you finally figure out what was blocking you on Project A, then you can always get back to it.

Building Robots With A 20×20 Grid

On autonomous robots, the most difficult challenges usually lie in the software and electronic realms, but the mechanics can also be very time consuming. To help address this challenge, [Nikodem Bartnik] is working on the Open Robotic Platform (ORP), a modular robotics chassis system designed to make prototyping as easy and affordable as possible. Video after the break.

The ORP is governed by a set of design rules to maintain interchangeability. Most of the design rules are very open, but the cornerstone of ORP is its standardized mounting plates featuring a 20 mm grid pattern of 3.5 mm mounting holes. These plates can be stacked using connecting rods, creating a versatile foundation upon which various components can be mounted.

[Nikodem] is on a mission to create and collect an entire library of these modular components. From custom 3D-printed holders that accommodate sensors, motors, wheels and dev boards to homemade PCBs that snap directly onto the chassis, everything to get your robot rolling as soon as possible. While manufacturing methods and materials are not limited, 3D printing and laser cutting will likely be the most popular manufacturing technologies for making your own parts.

Continue reading “Building Robots With A 20×20 Grid”

Fixing A Malfunctioning Keithley Model 179 Digital Multimeter

Inspired by electronics repair videos on YouTube, [Steven Leibson] recently found himself hunting down something to fix on eBay. This ‘something’ ended up being a  certified classic: a Keithley Model 179 digital multimeter from 1978. Listed as non-functional, the unit arrived at his door for less than $50. There weren’t any exciting pops or smoke when he powered it on, but the display seemed to be showing nothing but random nonsense.

The Keithley Model 179 multimeter has a convenient calibration sequence printed on its electrostatic shield cover and a deadly exposed ac line fuse in the upper left part of the photo. (Image credit: Steven Leibson)
The meter has a convenient calibration sequence printed on its electrostatic shield cover and a deadly exposed AC line fuse in the upper left part of the photo.

Ultimately reviving this little piece of history was quite simple, with the main issue turning out to be a dodgy inter-board connector between the main and display boards. After admiring an old repair attempt made on the component, he removed both the male and female connectors, replacing them with new ones.

This uncovered issues with the PCB, as the FR4 material and the traces on it had begun to delaminate, probably due to the old adhesive giving up due to age. With pretty low trace density this wasn’t anything that a bit of care couldn’t work around, fortunately.

Before finding this dodgy connector, [Steven] first tried to clean the front mechanical connectors, which took multiple sessions. This was followed up by oiling the mechanism. With the connector fixed and some cleaning, the meter’s display now read correctly. It still has some issues with starting up though, which [Steven] reckons are due to the old capacitors in the device.

Presumably some recapping will round off this fun device revival experience, but for the time being a Keithley Model 179 has been saved from e-waste, to inspire generations to come.

How Much Longer Will Cars Have Cigarette Lighter Ports?

Depending on the age of your car, it might contain a round 12 V power outlet in the dash, or possibly in the elbow compartment. And depending on your own age, you might know that as the cigarette lighter port. Whereas this thing used to have a single purpose — lighting cigars and cigarettes via hot coil — there are myriad uses today, from charging a phone to powering a dash camera to running one of those tire-inflating machines in a roadside emergency.

But how did it come to be a power source inside the vehicle? And how long will it stick around? With smoking on the decline for several decades, fewer and fewer people have the need for a cigarette lighter than do, say, a way to charge their phone. How long will the power source survive in this configuration?

Continue reading “How Much Longer Will Cars Have Cigarette Lighter Ports?”

The Cockpit Voice Recorder Controversy

Every time there’s a plane crash or other aviation safety incident, we often hear talk of the famous “black box”. Of course, anyone these days will tell you that they’re not black, but orange, for visibility’s sake. Plus, there’s often not one black box, but two! There’s a Flight Data Recorder (FDR), charged with recording aircraft telemetry, and a Cockpit Voice Recorder (CVR), designed to record what’s going on in the cabin.

It sounds straightforward enough, but the cockpit voice recorder has actually become the subject of some controversy in recent times. Let’s talk about the basics of these important safety devices, and why they’re the subject of some debate at the present time.

Continue reading “The Cockpit Voice Recorder Controversy”

Ingenuity May Be Grounded, But Its Legacy Will Be Grand

[Eric Berger] has a thoughtful and detailed article explaining why Ingenuity, NASA’s small helicopter on Mars, was probably far more revolutionary than many realize, and has a legacy to grant the future of off-world exploration that is already being felt.

Ingenuity was recently grounded due to rotor damage, having already performed far beyond the scope of its original mission. The damage, visible by way of a shadow from one of the rotors, might not look like much at first glance, but flying in the vanishingly-thin atmosphere of Mars requires the 1.18 meter (3.9 foot) carbon fiber blades to spin at very high speeds — meaning even minor rotor damage could be devastating.

Perseverance and Ingenuity pose for a selfie on Mars.

[Eric] points out a lot that is deeply interesting and influential about Ingenuity. Not only is successful powered flight on another planet a real Wright brothers moment, but how Ingenuity came to be validates a profoundly different engineering approach for NASA.

To work in the space industry is to be constrained by mass. But even so, Ingenuity‘s creators had a mere four pounds to work with. That’s for rotors, hardware, electronics, batteries, solar panel — all of it. NASA’s lightest computer module alone weighed a pound, so engineers had no choice but to depart from the usual NASA way of doing things to get it done at all. Not everyone  at NASA was on board. But Ingenuity worked, and it worked wonderfully.

Powered flight opens new doors, and not just for support roles like navigation planning. There’s real science that can be done if powered flight is on the table. For example, [Eric] points out that inaccessible terrain such as the Valles Marineris canyon on Mars is doubtlessly scientifically fascinating, but at 4,000 km long and up to 7 km deep, rover-based exploration is not an option.