Smart Assistants Need To Get Smarter

Science fiction has regularly portrayed smart computer assistants in a fanciful way. HAL from 2001: A Space Odyssey and J.A.R.V.I.S. from the contemporary Iron Man films are both great examples. They’re erudite, wise, and capable of doing just about any reasonable task that is asked of them, short of opening the pod bay doors.

Cut back to reality, and you’ll only be disappointed at how useless most voice assistants are. It’s been twelve long years since Siri burst onto the scene, with Alexa and Google Assistant following years later. Despite years on the market, their capabilities remain limited and uninspiring. It’s time for voice assistants to level up.

Continue reading “Smart Assistants Need To Get Smarter”

Lighting Up With Chemistry, 1823-Style

With our mass-produced butane lighters and matches made in the billions, fire is never more than a flick of the finger away these days. But starting a fire 200 years ago? That’s a different story.

One method we’d never heard of was Döbereiner’s lamp, an 1823 invention by German chemist Johann Wolfgang Döbereiner. At first glance, the device seems a little sketchy, what with a tank of sulfuric acid and a piece of zinc to create a stream of hydrogen gas ignited by a platinum catalyst. But as [Marb’s Lab] shows with the recreation in the video below, while it’s not exactly as pocket-friendly as a Zippo, the device actually has some inherent safety features.

[Marb]’s version is built mainly from laboratory glassware, with a beaker of dilute sulfuric acid — “Add acid to water, like you ought-er!” — bathing a chunk of zinc on a fixed support. An inverted glass funnel acts as a gas collector, which feeds the hydrogen gas to a nozzle through a pinch valve. The hydrogen gas never mixes with oxygen — that would be bad — and the production of gas stops once the gas displaces the sulfuric acid below the level of the zinc pellet. It’s a clever self-limiting feature that probably contributed to the commercial success of the invention back in the day.

To produce a flame, Döbereiner originally used a platinum sponge, which catalyzed the reaction between hydrogen and oxygen in the air; the heat produced by the reaction was enough to ignite the mixture and produce an open flame. [Marb] couldn’t come up with enough of the precious metal, so instead harvested the catalyst from a lighter fluid-fueled hand warmer. The catalyst wasn’t quite enough to generate an open flame, but it glowed pretty brightly, and would be more than enough to start a fire.

Hats off to [Marb] for the great lesson is chemical ingenuity and history. We’ve seen similar old-school catalytic lighters before, too.

Continue reading “Lighting Up With Chemistry, 1823-Style”

Digital Microscope With An On-Screen Multimeter

Some things go together, like chocolate and peanut butter. Others are more odd pairings, like bananas and bacon. We aren’t sure which category to put [IMSAI Guy]’s latest find in. He has a microscope with a built-in digital multimeter. You can see the video of the device in operation below.

The microscope itself is one of those unremarkable ten-inch LCD screens with some lights and a USB camera. But it also has jacks for test probes, and the display shows up in the corner of the screen. It is a normal enough digital meter except for the fact that its display is on the screen.

If you had to document test results, this might be just the ticket. If you are probing tiny little SMD parts under the scope, you may find it useful, too, so you don’t have to look away from what you are working on when you want to take a measurement. Although for that, you could probably just have a normal display in the bezel, and it would be just as useful.

At about $180 USD, it’s not exactly an impulse buy. We wonder if we’ll someday see an oscilloscope microscope. That might be something. These cheap microscopes are often just webcams with additional optics. You can do the same thing with your phone. If you don’t need the microscope, but you like the idea, can we interest you in a heads-up meter?

Continue reading “Digital Microscope With An On-Screen Multimeter”

Reverse Engineering Reveals Hidden API In Abandonware Trail Camera

It sometimes seems like there are two kinds of cheap hardware devices: those dependent on proprietary software that is no longer available and those that are equally dependent but haven’t been abandoned just quite yet. But rest assured, abandonment is always on the table, and until then, you get to deal with poorly written apps that often suffer from a crippling lack of essential functionality.

Such was the case for the wireless game camera that [Chris Jones] scored on the cheap, but rather than suffering with the original software, he decided to reverse engineer the camera and turn it into something more useful. The eBay description was promising — Bluetooth LE! WiFi! — but the reality proved less so. To save the batteries, WiFi is off by default and can only be turned on by connecting to the camera via BLE using a janky and crash-prone Android app.

[Chris]’ first step in reverse engineering the camera was to snoop into the BLE by capturing the Bluetooth packets to a file and running them through Wireshark. This revealed a write command with the text “BT_KEY_ON” — very promising. After verifying that this command turned on the camera’s access point, [Chris] got to work capturing WiFi packets using PCAPDroid and analyzing the results, again with Wireshark. Using every function available in the OEM app eventually revealed the full API on the camera, which gives file system control, access to individual images, and even putting the camera into live video mode.

Continue reading “Reverse Engineering Reveals Hidden API In Abandonware Trail Camera”

Modern Software Brings Back The Timex Datalink

As much as some people on the Internet might like to think — no, Apple did not come up with the idea of the smart watch. Even if you ignore the calculator watches that we imagine a full 60% of Hackaday readers wore at one time or another in their lives, the Timex Datalink was already syncing with computers and pulling down the user’s list of appointments back in 1994 by decoding the pulses of light produced by a CRT monitor. Hey, it sounded like a good idea at the time.

Unfortunately, this idea hasn’t aged well. The technique doesn’t work on more modern displays, and naturally the companion software to generate the flashing patterns was written for Windows 3.1. But thanks to the reverse engineering efforts of [Synthead], you can now sync any version of the Timex Datalink to your computer using nothing more complex than the onboard LED of the Teensy LC or Raspberry Pi Pico.

There’s actually several different projects working together to make this happen. In place of a CRT, there was an official “Timex Datalink Notebook Adapter” back in the day that was designed to be used on laptops and featured a single blinking LED. That’s what [Synthead] has recreated with timex-datalink-arduino, allowing a microcontroller to stand in for this gadget and featuring 100% backwards compatibility with the original Datalink software.

Appointment data is loaded from a text file.

But since you’re probably not rocking Windows 3.1 anymore, having access to that software is far from a given. That’s why [Synthead] also created timex_datalink_client, which is a Ruby library that lets you generate data fit for upload into the Timex Datalink. At the time of this writing there doesn’t seem to be a friendly user interface (graphical or otherwise) for this software, but it’s easy enough to feed data into it using plain-text configuration files.

Helpfully [Synthead] provides screenshots of information loaded into the original software, followed by a config file example that accomplishes the same thing. It looks like writing some glue code that pulls your schedule from whatever service you fancy and formats it for the Datalink client should be relatively simple.

We’ve previously seen projects that got the Timex Datalink synced without the need for a CRT, but they still required the original software. To our knowledge, this is the first complete implementation of the Datalink protocol that doesn’t rely on any original hardware or software. Expect eBay prices to go up accordingly.

Sniffing Passwords, Rickrolling Toothbrushes

If you could dump the flash from your smart toothbrush and reverse engineer it, enabling you to play whatever you wanted on the vibrating motor, what would you do? Of course there’s no question: you’d never give up, or let down. Or at least that’s what [Aaron Christophel] did. (Videos, embedded below.)

But that’s just the victory lap. The race began with previous work by [Cyrill Künzi], who figured out that the NFC chip inside was used for a run-time counter, and managed to reset it by sniffing the password with an SDR as it was being transmitted. A great hack to be sure, but it only works for people with their own SDR setup.

With the goal of popularizing toothbrush-head-NFC-hacking, [Aaron] busted open the toothbrush itself, found the debug pins, dumped the flash, and got to reverse engineering. A pass through Ghidra got him to where the toothbrush reads the NFC tag ID from the toothbrush head. But how does it get from the ID to the password? It turns out that it runs a CRC on a device UID from the NFC tag itself and also a manufacturer’s string found in the NFC memory, and scramble-combines the two CRC values.

Sounds complicated, but the NFC UID can be read with a cellphone app, and the manufacturer’s string is also printed right on the toothbrush head itself for your convenience. Armed with these two numbers, you can calculate the password, and convince your toothbrush head that it’s brand new, all from the comfort of your smartphone! Isn’t technology grand?

We’re left guessing a little bit about the Rickroll hack, but we’d guess that once [Aaron] had the debug pins on the toothbrush’s microcontroller, he just couldn’t resist writing and flashing in a custom firmware. Talk about dedication.

[Aaron] has been doing extensive work on e-paper displays, but his recent work on the Sumup payment terminal is a sweet look at hacking into higher security devices with acupuncture needles.

Continue reading “Sniffing Passwords, Rickrolling Toothbrushes”

Conductive Gel Has Potential

There are some technologies first imagined in the Star Trek universe have already come to exist in the modern day. Communicators, tablet computers, and computer voice recognition are nearly as good as seen in the future, and other things like replicators and universal translators are well on their way. Star Trek: Voyager introduced a somewhat ignored piece of futuristic technology, the bio-neural gel pack. Supposedly, the use of an organic gel improved the computer processing power on the starship. This wasn’t explored too much on the series, but [Tom] is nonetheless taking the first steps to recreating this futuristic technology by building circuitry using conductive gel.

[Tom]’s circuitry relies on the fact that salts in a solution can conduct electricity, so in theory filling a pipe or tube with a saline solution should function similarly to a wire. He’s also using xanthan gum to increase viscosity. While the gel mixture doesn’t have quite the conductivity of copper, with a slight increase in the supplied voltage to the circuit it’s easily able to be used to light LEDs. Unlike copper, however, these conductive gel-filled tubes have some unique properties. For example, filling a portion of the tube with conductive gel and the rest with non-conductive mineral oil and pushing and pulling the mixture through the tube allows the gel to move around and engage various parts of a circuit in a way that a simple copper wire wouldn’t be able to do.

In this build specifically, [Tom] is using a long tube with a number of leads inserted into it, each of which correspond to a number on a nixie tube. By moving the conductive gel, surrounded by mineral oil, back and forth through the tube at precise intervals each of the numbers on the nixie tube can be selected for. It’s not yet quite as good as the computer imagined in Voyager but it’s an interesting concept nonetheless, not unlike this working replica of a communicator badge.

Continue reading “Conductive Gel Has Potential”