Never Drill In The Wrong Place, With This Camera!

It’s fair to say that one of the biggest advances for the electronic constructor over the last decade or so has been the advent of inexpensive small-order PCB manufacture. That said, there are still plenty who etch their own boards, and for them perhaps the most fiddly part of the process comes in drilling holes accurately. It’s to aid in this task that [John McNelly] has created a camera with a periscope, to give the drill bit perfect alignment with the hole.

The idea is simple enough, an off-the-shelf all-in-one microscope camera points sideways at a mirror allowing it to look upwards. The viewport is placed under the drill and the crosshairs on the microscope are lined up with the end of the drill. Then the board can be placed on top and the pad lined up with the crosshairs, and a perfectly placed hole can be drilled. It’s a beautiful piece of lateral thinking which we like, as it ends that lottery of slightly off-centre holes. You can see it in glorious portrait-mode action in the video below the break.

Oddly this isn’t the first PCB drilling microscope we’ve shown you. but it may well be the more elegant of the two.

Continue reading “Never Drill In The Wrong Place, With This Camera!”

How Hardware Testing Got Plugged Into A Continuous Integration Framework

The concept of Continuous Integration (CI) is a powerful tool in software development, and it’s not every day we get a look at how someone integrated automated hardware testing into their system. [Michael Orenstein] brought to our attention theĀ Hardware CI Arena, a framework for doing exactly that across a variety of host OSes and microcontroller architectures.

The Hardware CI Arena allows testing software across a variety of hardware boards such as Arduino, RP2040, ESP32, and more.

Here’s the reason it exists: while in theory every OS and piece of hardware implements things like USB communications and device discovery in the same way, in practice that is not always the case. For individual projects, the edge cases (or even occasional bugs) are not much of a problem. But when one is developing a software product that aims to work seamlessly across different hardware options, such things get in the way. To provide a reliable experience, one must find and address edge cases.

The Hardware CI Arena (GitHub repository) was created to allow automated testing to be done across a variety of common OS and hardware configurations. It does this by allowing software-controlled interactions to a bank of actual, physical hardware options. It’s purpose-built for a specific need, but the level of detail and frank discussion of the issues involved is an interesting look at what it took to get this kind of thing up and running.

The value of automatic hardware testing with custom rigs is familiar ground to anyone who develops hardware, but tying that idea into a testing and CI framework for a software product expands the idea in a useful way. When it comes to identifying problems, earlier is always better.

A More Conspicuous Computer Assistant

Back in the last century, especially in the ’40s to the ’60s, one of the major home decor trends was to install various home appliances, like the television or stereo, into its own piece of furniture. These were usually bulky, awkward, and incredibly heavy. And, since real life inspires art, most of the futuristic sci-fi technology we saw in movies and TV of the time was similarly conspicuous and physical. Not so with modern technology, though, where the trend now is to hide it out of the way and forget it exists. But [dermbrian] wanted some of his modern technology to have some of the mid-century visibility aesthetic so he made some modifications to his Amazon Echo.

The Echo itself remains largely unmodified, other than placing it inside a much larger cookie tin with some supporting electronics. For that, [dermbrian] found a relay board with a built-in microphone which switches the relay off when it detects sound so that when the Echo is activated, the sound from its speaker activates the module. From there it drives a series of blinkenlights which mimic the 60s computer aesthetic. Some custom fabrication and light diffusion methods were needed to get it to look just right, and a switch on the outside can disable the mechanism if it is getting triggered by background noise like music from his stereo.

While the appeal of this style may be lost on anyone who wasn’t a fan of the original Lost in Space, Star Trek, or Jetsons, it certainly holds a special significance for those who grew up in that era. It’s certainly not the first project we’ve seen to take a look back at the aesthetics of bygone eras, either. Take a look at this project which adds lenses to modern displays to give them the impression of antiquated CRT displays.

Continue reading “A More Conspicuous Computer Assistant”

A glass plate holds a translucent set of silver electrodes. The plate appears to be suspended across two petri dishes, so the scale must be small.

Hydrogels For Bioelectronic Interfaces

Interfacing biological and electrical systems has traditionally been done with metal electrodes, but something flexible can be more biocompatible. One possible option is 3D-printed bioelectric hydrogels.

Electrically conductive hydrogels based on conducting polymers have mechanical, electrical, and chemical stability properties in a fully organic package that makes them more biocompatible than other systems using metals, ionic salts, or carbon nanomaterials. Researchers have now found a way to formulate bi-continuous conducting polymer hydrogels (BC-CPH) that are a phase-separated system that can be used in a variety of manufacturing techniques including 3D printing.

To make the BC-CPH, a PEDOT:PSS electrical phase and a hydrophilic polyurethane mechanical phase are mixed with an ethanol/water solvent. Since the phase separation occurs in the ink before deposition, when the solvent is evaporated, the two phases remain continuous and interspersed, allowing for high mechanical stability and high electrical conductivity which had previously been properties at odds with each other. This opens up new avenues for printed all-hydrogel bioelectronic interfaces that are more robust and biocompatible than what is currently available.

If you want to try another kind of squishy electrode gel, try growing it.

Hackaday Links Column Banner

Hackaday Links: June 25, 2023

Is it really a dystopian future if the robots are radio-controlled? That’s what came to mind reading this article on a police robot out of Singapore, complete with a breathless headline invoking Black Mirror, which is now apparently the standard by which all dystopias are to be judged. Granted, the episode with the robo-dogs was pretty terrifying, but it seems like the Singapore Police Force has a way to go before getting to that level. The bot, which has been fielded at Changi Airport after extensive testing and seems to be completely remote-controlled, is little more than a beefy telepresence robot. At 5.5 feet (1.7 meters) tall, the bot isn’t terribly imposing, although it apparently has a mast that can be jacked up another couple of feet, plus there are lights, sirens, and speakers that can get the message across. Plus cameras, of course; there are always cameras. The idea is to provide extra eyes to supplement foot patrols, plus the potential to cordon off an incident until meatspace officers arrive. The buzzword game here is weak, though; there’s no mention of AI or machine learning at all. We have a feeling that when the robots finally rise up, ones like this will be left serving the drinks.

Continue reading “Hackaday Links: June 25, 2023”

Watch Hides Gesture Controls In Wristband

Over the last five to ten years, smart watches have become fairly ubiquitous, with the Apple Watch being among the most prominent of them. Not everyone wants or needs all of the capabilities of these devices, though; plenty are still opting for simpler devices which only have a few functions built into them. [Josh] has been working on one of these devices but takes a major design cue from their smart counterparts with the addition of gesture controls for the watch built into the wristband instead of relying on a more traditional button interface.

The watch hosts most of the functionality of a non-smart digital watch, with a timer, alarms, and a stop watch built-in. To change the time or access any of these functions, a combination of resistive and capacitive touch sensors are built into the wristband near the watch face. The combination of sensors aims to use the benefits of either type of sensor, with the capacitive sensors being used for precision and gesture recognition and the resistive sensors being used for pressure sensitivity. Placing these sensors in the band instead of the watch face improves visibility as well, since the screen won’t be obscured by the user touching the screen.

[Josh] originally intended this type of watch to be used for those with prosthetics or other disabilities which would limit the ability to use standard watch buttons or interact with a touch screen on the watch face itself. The device is working quite well as can be seen in the video linked below, but is still in the prototyping phase and under active development. For finishing up the final versions, we’d recommend taking a look at the design of these open-source smart watches for their high quality fit and finish.

Continue reading “Watch Hides Gesture Controls In Wristband”

This Camera Does Not Exist

Blender is a professional-grade 3D-rendering platform and much more, but it suffers sometimes from the just-too-perfect images that rendering produces. You can tell, somehow. So just how do you make a perfectly rendered scene look a little more realistic? If you’re [sirrandalot], you take a photograph. But not by taking a picture of your monitor with a camera. Instead, he’s simulating a colour film camera in extraordinary levels of detail within Blender itself.

The point of a rendering package is that it simulates light, so it shouldn’t be such a far-fetched idea that it could simulate the behaviour of light in a camera. Starting with a simple pinhole camera he moves on to a meniscus lens, and then creates a compound lens to correct for its imperfections. The development of the camera mirrors that of the progress of real cameras over the 20th century, simulating the film with its three colour-sensitive layers and even the antihalation layer, right down to their differing placements in the focal plane. It’s an absurd level of detail but it serves as both a quick run-down of how a film camera and its film work, and how Blender simulates the behaviour of light.

Finally we see the camera itself, modeled to look like a chunky medium format Instamatic, and some of its virtual photos. We can’t say all of them remove the feel of a rendered image, but they certainly do an extremely effective job of simulating a film photograph. We love this video, take a look at it below the break.

Continue reading “This Camera Does Not Exist”