Roboticized 3D Printer Has Been Developing Shock Absorbing Structures For Years

Imagine you want to iterate on a shock-absorbing structure design in plastic. You might design something in CAD, print it, then test it on a rig. You’ll then note down your measurements, and repeat the process again. But what if a robot could do all that instead, and do it for years on end? That’s precisely what’s been going on at Boston University.

Inside the College of Engineering, a robotic system has been working to optimize a shape to better absorb energy. The system first 3D prints a shape, and stores a record of its shape and size. The shape is then crushed with a small press while the system measures how much energy it took to compress. The crushed object is then discarded, and the robot iterates a new design and starts again.

The experiment has been going on for three years continuously at this point. The MAMA BEAR robot has tested over 25,000 3D prints, which now fill dozens of boxes. It’s not frivolous, either. According to engineer Keith Brown, the former record for a energy-absorbing structure was 71% efficiency. The robot developed a structure with 75% efficiency in January 2023, according to his research paper.

Who needs humans when the robots are doing the science on their own? Video after the break.

Continue reading “Roboticized 3D Printer Has Been Developing Shock Absorbing Structures For Years”

3D Printed Braille Trainer Reduces Barrier To Entry

Accessibility devices are a wonder of modern technology, allowing people with various needs to interact more easily with the world. From prosthetics to devices to augment or aid someone’s vision or hearing, devices like these can open up many more opportunities than would otherwise exist. A major problem with a wide array of these tools is that they can cost a fortune. [3D Printy] hoped to bring the cost down for Braille trainers which can often cost around $1000.

Braille trainers consist of a set of characters, each with six pins or buttons that can be depressed to form the various symbols used in the Braille system. [3D Printy]’s version originally included six buttons, each with a set of springs, that would be able to pop up and down. After some work and real-world use, though, he found that his device was too cumbersome to be effective and redesigned the entire mechanism around flexible TPU filament, allowing him to ditch the springs in favor of indentations and buttons that snap into place without a dedicated spring mechanism.

The new design is modular, allowing many units to be connected to form longer trainers than just a single character. He’s also released his design under the Creative Commons public domain license, allowing anyone to make and distribute these tools as they see fit. The design also achieves his goal of dramatically reducing the price of these tools to essentially just the cost of filament, provided you have access to a 3D printer of some sort. If you need to translate some Braille writing and don’t want to take the time to learn this system, take a look at this robotic Braille reader instead.

Thanks to [George] for the tip!

Continue reading “3D Printed Braille Trainer Reduces Barrier To Entry”

This WiFi Filament Sensor Is Unnecessary, But Awesome

As desktop 3D printers have inched towards something resembling the mainstream, manufacturers have upped their game across the board. Even the quality of filament that you can get today is far better than what was on the market in the olden days, back when a printer made out of laser-cut birch wasn’t an uncommon sight at the local makerspace. Now, even the cheap rolls are wound fairly well and are of a consistent diameter. For most folks, you just need to pick a well-reviewed brand, buy a roll, and get printing.

But as with everything else, there are exceptions. Some people are producing their own filaments, or want to make sure their extrusion rate is perfectly calibrated. For those that need the capability, the WInFiDEL from [Sasa Karanovic] can detect filament diameter in real-time while keeping the cost and complexity as low as possible. Even better, with both the hardware and software released as open source, it makes an excellent starting point for further development and customization.

Continue reading “This WiFi Filament Sensor Is Unnecessary, But Awesome”

3D Print A Drill-Powered Helicopter Toy Because It’s Simply Fun

These days, you can get a fully remote-control helicopter that you can fly around your house for about $30. Maybe less. Back in the day, kids had to make do with far simpler toys, like spinning discs that just flew up in the air. [JBV Creative] has built a toy just like that with his 3D printer. It may be simple, but it also looks pretty darn fun.

The design is straightforward. It uses a power drill to spin up a geartrain, which in turn drives a small disc propeller. Spin the propeller fast enough and it’ll launch high into the air. The geartrain mounts to the drill via the chuck, and it interfaces with the propeller with a simple toothed coupler. Alternatively, there’s also a hand-cranked version if you don’t have a power drill to hand.

Launching is easy. First, the drill spins the propeller up to speed. Then, when the drill’s trigger is released, it slows down, and the propeller spins free of the toothed coupler, with the lift it generates carrying it into the sky.

Files are available online for those interested. We could imagine this toy could make the basis for a great design competition. Students could compete to optimise the design with more effective gear ratios or better airfoils. We’ve seen similar designs before, too. Video after the break.

Continue reading “3D Print A Drill-Powered Helicopter Toy Because It’s Simply Fun”

3D Printing In Custom PLA With A TPU Core

[Stefan] from CNC Kitchen explored an unusual approach to a multi-material print by making custom PLA filament with a TPU core to make it super-tough. TPU is a flexible filament whereas PLA is hard almost to the point of being brittle. The combo results in a filament with some unusual properties, inviting some thoughts about what else is possible.

Cross-section of 3D print using white PLA with a red TPU core.

[Stefan]’s video covers a few different filament experiments, but if you’d like to see the TPU-PLA composite you can skip ahead to 18:15. He first creates the composite filament by printing an oversized version on a 3D printer, then re-forming it by running it through a Recreator to resize it down to 1.75 mm.

We have seen this technique of printing custom filaments before, which is useful to create DIY multi-color filaments in small quantities right on a 3D printer’s print bed with no special equipment required. This is an effective method but results in filament with a hexagonal profile, which works but isn’t really ideal. By printing his custom composite at 4 mm diameter then resizing the filament down to 1.75 mm, [Stefan] was able to improve overall printability.

That being said, TPU and PLA have very different characteristics and don’t like to adhere to one another so the process was pretty fiddly. TPU-cored PLA might be troublesome and uncooperative to make, but it can be done with some patience and fairly simple equipment.

Despite the difficulties, test prints were pretty interesting. PLA toughness was roughly doubled and under magnification one can see a lattice of TPU strands throughout the prints which are unlike anything else. Check it out in the video, embedded below.

Continue reading “3D Printing In Custom PLA With A TPU Core”

A Vernier Take On A 3D Printer Extruder Indicator

A common way to visualize that a 3D printer’s extruder motor — which feeds the filament into the hot end — is moving is to attach a small indicator to the exposed end of the motor’s shaft. As the shaft turns, so does the attached indicator.

Small movements of the motor are therefore turned into larger movements of something else. So far, so simple. But what about visualizing very small extrusions, such as those tiny ones made during ironing?

[Jack]’s solution is a Vernier indicator for the extruder. Even the smallest movements of the extruder motor’s shaft are made clearly visible by such a device, as shown in the header image above. Vernier scales are more commonly found on measurement tools, and the concept is somewhat loosely borrowed here.

The usual way these lightweight indicators are attached is with a small magnet, and you can read all about them and see examples here.

This new design is basically the same, it simply has a background in a contrasting color added into the mix. [Jack]’s design is intended for the Bambu A1 printer, but the idea can be easily adapted. Give it a look if you find yourself yearning for a bit more visibility in your extruder movements.

3D Printed Adapter Helps You Eat Chicken Nuggets On The Highway

So often, we see 3D printers used to create some nifty little tool for a tricky little job. Maybe it’s to lock cams together for a timing belt change, or to work as a jig for soldering some complex device. However, some hacks are even simpler than that. [maker_guy] realized that eating nuggets in the car could be easier than ever with a little printed adapter.

The print is simple. It’s a round caddy for the nugget sauces given out by Chick-fil-A restaurants. Why round? Because it lets the nugget sauce sit neatly in your car’s cupholder at an accessible height. Put the sauce tub in the adapter, peel it open, and you can dip to your heart’s content.

So simple, yet a game changer all the same.

No more delicately balancing Zesty Buffalo by the gearstick while you try and chow down. Nor will your seat covers be tainted with Honey Mustard!

“Not a hack!” you scream. “It’s frivolous nonsense!” To that I say, are you a nugget eater or not? I myself partake, and I can absolutely see the value in this. You see, us journalists work hard. We’re often stuck eating substandard food in our cars on the way from one thing to another, like so many others in busy professions. If a smart little 3D-printed adapter can make mealtime easier and save some mess, I’m calling that a win.

You should never be afraid to use your creativity to make tools to improve your life. Parts are on Thingiverse if you need to print your own. Mod it to suit McDonald’s product if you need. Heck, print in black and it’d look like a stock part of the car!

You don’t have to like this simple adapter, but you can’t deny its utility! Share your own nifty little adapter ideas in the comments.