Condemned Precision Capacitors Find New Home, Refuse To Become Refuse

Ah, the age old tradition of Dumpster diving! Sometimes we happen to spot something that’s not quite trash, but not quite perfect, either. And when [dzseki], an EEVblog.com forum user, spotted some high-precision capacitors being 86’d at their employer’s e-waste pile, [dzseki] did what any good hacker would do: took them home, tested them, and tore them down to understand and either repair or reuse them. They explain their escapades and teardown in this EEVblog.com forum post.

High-precision capacitors with RF connectors.

If you’re not familiar with capacitors, they are really just two or more plates of metal that are separated by an insulator, and in the case of these very large capacitors, that insulator is mostly air. Aluminum plates are attached with standard bolts, and plastic insulators are used as needed. There’s also discussion of an special alloy called Invar that lends to the thermal stability of the capacitors.

[dzseki] notes that these capacitors were on their way to the round file because they were out of spec, but only by a very, very small amount. They may not be usable for the precision devices they were originally in, but it’s clear that they are still quite useful otherwise. [dzseki]

Of course, Dumpster diving for cool parts is nothing new, and we’ve covered nifty projects such as this frankenmonitor bashed together from two bin finds.

Thank you [David] for the great tip, and don’t forget to leave your own in the Tip Line.

A Home Made Sewing Machine May Be The Only One

The sewing machine is a tool that many of us will have somewhere around our workshop. Concealed within it lies an intricate and fascinating mechanism. Some of us may have peered inside, but very few indeed of us will have gone to the effort of building our own. In case you had ever wondered whether it was possible, [Fraens] has done just that, with what he claims may be the only entirely homemade sewing machine on the Internet.

If you’ve ever studied the history of sewing machines you’ll notice that it bears a striking resemblance to some of the earliest commercial machines, with a relatively short reach and an entirely open construction. The main chassis appears to be laser-cut acrylic while all the fittings are 3D-printed, with machined brass bushes and aluminum rods for the other metal parts. The design utilizes a hand crank, but is also pictured with a DC motor. It makes for a fascinating illustration of how sewing machines work. Sadly we can’t see any design file links (Update: He’s contacted us to tell us they’re now on Thingiverse.), so you might have to be inventive if that’s the way you want to build your own. Take a look at it in the video below the break.

Fancy a sewing machine but don’t fancy making your own? We’ve got the guide for that, and for filling the rest of your textile bench.

Continue reading “A Home Made Sewing Machine May Be The Only One”

Water Drips Up In Kid-Friendly Engineering Experiment

Did you know that water can drip UP instead of down? It’s true! Okay, okay- it’s a bit of an optical illusion, but one that’s mesmerizing no less, and it’s one that is especially awe-inspiring for kids. As [Science Buddies] explains in the video below the break, it’s also achievable for anyone with some basic supplies.

On first glance, the “water dripping upward” illusion looks like it must be extremely complicated with precisely timed drops, and perfectly triggered strobing lights and the like- right? Well, not so much. [Science Buddies] demonstrates a highly simplified experiment using only an aquarium pump, a basic frame, a smart phone with a strobing app, and naturally, water. The experiment is presented in a simple manner that would allow a young person to replicate it without too much adult intervention.

The video goes into such concepts as frequency, duty cycle (pulse width modulation), and other basic engineering principles. The experiment can be completed for just a few dollars for the pump and tubing, and the rest can be improvised. What a great way to get a young one started on their way to engineering!

If you’d like to see a more fleshed out version of a similar machine, check out this gravity defying dripper we featured a few years ago.
Continue reading “Water Drips Up In Kid-Friendly Engineering Experiment”

A tiny TV playing Super Mario All-Stars

The SF1 Mini Is A Homebrew Version Of An Obscure Nintendo Console

The Super NES is arguably the best known console of the 16-bit era. It typically came in the form of a grey box with either grey or purple buttons, and an angular or streamlined design, depending on whether you lived in North America, Europe or Asia. Compact and mini versions followed later, but there were also a few lesser-known models released during the SNES’s heyday in the early 1990s. One of these was the Sharp SF1: a CRT television with a built-in Super Nintendo. The cartridge slot was located at the top, with the controllers connecting at the front. The internal video connection even provided better image quality than a typical SNES setup.

Some light soldering required.

The SF1 was never sold outside Japan and is quite rare nowadays. But even if you can find one, the bulky CRT will take up a lot of space in your home. [Limone] therefore decided to build himself a smaller replica instead. His “SF1 mini” comes in a 3D printed case that holds a 5.5″ TFT screen, stereo speakers, and connections for game paks and game pads.

Thankfully, [Limone] didn’t sacrifice an original SNES to make this project: instead, he used a DIY Super Nintendo kit developed by a company called Columbus Circle. This kit contains a modern replica of a SNES motherboard and is intended for custom builds like this. However, the layout of the motherboard didn’t match [Limone]’s intended design, so he desoldered several components and re-attached them using a huge web of magnet wire. An RGB-to-HDMI converter connects the SNES’s video output to the TFT screen and provides for remarkably sharp graphics.

[Limone] explains the build process in detail in the video embedded below (in Korean, with English subs available). We’ve seen a couple of neat SNES replicas, some small and some particularly tiny, but this has to be the first SF1 replica.

Continue reading “The SF1 Mini Is A Homebrew Version Of An Obscure Nintendo Console”

Raspberry Pi Simulates The Real Analog TV Experience

If you’ve laid hands on a retro analog TV, have the restoration bug, and you plan to make the final project at least somewhat period-correct, you face a bit of a conundrum: what are you going to watch? Sure, you can serve up just about any content digitally these days, but some programs just don’t feel right on an old TV. And even if you do get suitably retro programming, streaming isn’t quite the same as the experience of tuning your way through the somewhat meager selections as we did back in the analog days.

But don’t worry — this Raspberry Pi TV simulator can make your streaming experience just like the analog TV experience of yore. It comes to us from [Rodrigo], who found a slightly abused 5″ black-and-white portable TV that was just right for the modification. The battery compartment underneath the set made the perfect place to mount a Pi, which takes care of streaming a variety of old movies and shorts. The position of the original tuning potentiometer is read by an Arduino, which tells the Pi which “channel” you’re currently tuned to.

Composite video is fed from the Pi’s output right into the TV’s video input, and the image quality is just about what you’d expect. But for our money, the thing that really sells this is the use of a relay to switch the TV’s tuner back into the circuit for a short bit between channel changes. This gives a realistic burst of static and snow, just like we endured in the old days. Hats off to [Rodrigo] for capturing everything that was awful about TV back in the day — Mesa of Lost Women, indeed! — but still managing to make it look good.

Continue reading “Raspberry Pi Simulates The Real Analog TV Experience”

Wooden You Like To Hear A CNC-Cut Phonograph Record?

Say what you will about [Thomas Edison], but it’s hard to deny the genius of his self-proclaimed personal favorite invention: the phonograph. Capturing sound as physical patterns on a malleable medium was truly revolutionary, and the basic technology that served as the primary medium of recorded sound for more than a century and built several major industries is still alive and kicking today.

With so much technological history behind it, what’s the aspiring inventor to do when the urge to spin your own phonograph records strikes? Easy — cut them from wood with a CNC router. At least that’s how [alnwlsn] rolled after the “one-percent inspiration” hit him while cutting a PCB with his router. Reasoning that the tracks on the copper were probably about as fine as the groove on a record, he came up with some math to describe a fine-pitch spiral groove and overlay data from a sound file, and turn the whole thing into G-code.

For a suitable medium, he turned to the MDF spoil board used to ship PCB stencils, which after about three hours of milling resulted in a rather hairy-looking 78-RPM record. Surprisingly, the record worked fairly well on a wind-up Victrola. The spring-powered motor was a little weak for the heavy wooden record and needed a manual assist, but you can more or less clearly hear the 40-second recording. Even more surprising was how much better the recording sounded when the steel needle was replaced with a chunk of toothpick. You can check out the whole thing in the video below, and you’ll find the G-code generation scripts over on GitHub.

Is all this talk about reproducing music using wiggly lines confusing you? Woah, there, whippersnapper — check out [Jenny]’s primer for the MP3 generation for the background you need.

Continue reading “Wooden You Like To Hear A CNC-Cut Phonograph Record?”

The Secrets Of The Pop Pop Boat

Many kids get an early introduction to mechanics with tin pop-pop boats. If you haven’t played with one – you’re missing out! Pop Pop boats are fun toys – but how they work is often misunderstood. To clear this up, [Steve Mould] takes a deep dive into the theory of operation of the pop pop boat.

Most people think these toys operate like a simple steam engine, with water being flashed into steam inside a tiny tin boiler. Turns out that’s not the case. To explain the physics, [Steve] commissioned a glass version of the boat.

The glass boat shows that during normal operation, there isn’t any water at all in the “boiler” at all. The water is only in the boat’s small exhaust tubes. The air inside the tank is heated by a candle. The air expands and pushes the water out of the tubes. This allows the air to cool, and return to the tank. The water then rushes back up the tubes, and the process repeats.

One of the more interesting facts of the video is that the glass boat doesn’t pop. The popping sound associated with the boat is actually made by the tin diaphragm on top of the “boiler”.

[Steve] has gotten pretty good at explaining complex topics using clear cutaway models. If this tickles your fancy, check out his water computer.

Continue reading “The Secrets Of The Pop Pop Boat”