Doom On The NES

“But can it run Doom?” is perhaps the final test of hacking a platform. From calculators to thermostats, we’ve seen Doom shoehorned into a lot of different pieces of hardware. Many times we’re left scratching our heads at the mashup, and this is no exception.

[TheRasteri] wasn’t satisfied with the existing ports of Doom, so he decided to bring the classic game to a classic console, the NES. In the video embedded after the break, he helpfully points out the system requirements for running Doom, and compares them with the specifications of the NES. Spoilers: not nearly enough.

How did he manage the feat? Taking inspiration from Nintendo’s own SuperFX chip, he embedded a co-processor in the cartridge, and fed the video stream from the cartridge back into the NES. It might not be fair to call it a co-processor, since it’s a Raspberry Pi with thousands of times the processing power of the 6502 that powers the NES. The idea might seem familiar, and in fact it was partially inspired by [Tom7]’s similar hack last year.

Using a Cypress USB controller to feed the graphics bus, [TheRasteri] is able to run Doom on the Raspberry Pi, take the visuals from the game, and convert them into blocks of graphics the NES expects to load from the cartridge. The best trick is that he apparently managed to squeeze everything into a normal NES cartridge. He plans to release a build video on his channel, so keep an eye out.

Meanwhile, don’t forget to take a look at those calculators and thermostats we mentioned.

Continue reading “Doom On The NES”

Gamifying Household Chores Helps Get The Kids To Pitch In

It’s rare to find anyone that gets excited about doing chores. This can lead to members of a household abrogating their duties. In these cases, enforcement is a common tactic. Tired of laminated chore grids and inconsistent results, [alastair-a] decided to tech up with an electronic chore tracking system.

[alastair-a]’s Task Manager is based around an Arduino Nano, fitted with the ever-popular HD44780-compatible LCD screen. Interfacing with the unit is via rotary encoder and RFID tag, while a real-time clock module keeps track of the time.

A custom data structure is used to manage tasks. This allows varying frequencies to be set for different tasks, as well as keeping track of the time of completion by different users. Each user has their own personal RFID tag, which can be swiped across the reader to indicate when a chore has been done.

The initial intent was to have the device print reports each week in order to reward the best performing members of the household. However, [alastair-a] reports the device was so popular with the younger members of the household, that they seem to have forgotten about rewards entirely!

We’ve seen chore reminders before; it’s often popular to build them as IoT devices.

Motion Tracking Face Really Does Follow You Around The Room

Many of us have had the experience of viewing an artwork in a gallery, in which the eyes appear to follow one around the room. In our high-technology work, this no longer need be achieved with artistic skill. You can just build something that actually moves instead.

Chartreuse is the creation of [alynton], and has a personality all its own. A face was created out of laser cut wood, and assembled layer by layer. It was then given glowing LED eyes, and mounted on a rotating plate. Combined with an Arduino and an ultrasonic sensor, it’s capable of tracking targets moving within its field of view, and rotating to follow them. Chartreuse’s expression changes as well, with from happy to forlorn, depending on the situation.

It’s a great example of the artistic results that can be achieved by layering lasercut materials, as well as how art can be brought to life with simple maker staples like servos and microcontrollers. Motion tracking has plenty of useful applications, too – like aiming heat directly at cold humans. Video after the break.

Continue reading “Motion Tracking Face Really Does Follow You Around The Room”

Yet Another Robotic Rubik’s Solver

The Rubik’s Cube was a smash hit when it came out in 1974, and continues to maintain a following to this day. It can be difficult to solve, but many take up the challenge. The Arduino Rubik’s Solver is a robot that uses electronics and maths to get the job done.

The system consists of computer-based software and a hardware system working in concert to solve the cube. Webcam images are processed on a computer which determines the current state of the cube, and the necessary moves required to solve it. The solving rig is constructed from steel rods, lasercut acrylic, and 3D printed parts, along with an Arduino and six stepper motors. The Arduino receives instructions from the solving computer over USB serial link. These are then used to command the stepper motors to manipulate the cube in the correct fashion.

It’s no speed demon, but the contraption is capable of solving a cube without any problems. Manipulation of the cube is reliable and smooth, and the build is neat and tidy thanks to its carefully designed components. Of course, there are now even Rubik’s Cubes that can solve themselves. Video after the break.

Continue reading “Yet Another Robotic Rubik’s Solver”

I Went To The Moon And All I Got Was This Lousy T-Shirt

It’s been a long time coming but [Fran] finally has a DSKY display, a replica of the user interface display found in the Apollo Guidance Computer. The best part? It’s a t-shirt.

This build is a long, long, time in the making first beginning in 2015 when Fran started investigating the DSKY of the Apollo Guidance Computer. At the time, there were reproductions, but honesty they were all terrible. The reproductions used off-the-shelf seven-segment LEDs or light pipes. The real DSKY was a work of art and at the time probably the most complex electroluminescent display ever created. This led [Fran] to a very special trip to the annex of the Air and Space Museum where she was allowed to inspect a real DSKY display. She got all the measurements, and with some non-destructive investigation, she was able to piece together how this very special display was put together.

With that information, [Fran] was able to figure out that this display was a fairly complex series of silk screens. If it’s silk screen, you can put it on a t-shirt, so that’s exactly what [Fran] did. This used a DIY silk screen jig with phosphorescent inks. It’s not an electroluminescent display, but it does glow in the dark.

While this DSKY t-shirt does glow in the dark, that means it’s not an electroluminescent display like the original DSKY. That said, screen printed electroluminescent displays on a t-shirt aren’t unheard of. Several years ago, a screen printing company did a few experiments with EL displays on wearables. Of course, if you want a real electroluminescent DSKY display, [Ben Krasnow] has a very modern reproduction of the screen printed display. The electronics of [Ben]’s project do not resemble what flew to the moon in any way whatsoever; the original DSKY had relays. That said, we’ve never been closer to a modern recreation of the display from an Apollo Guidance Computer, and we have [Fran] and [Ben]’s work to point us forward.

Continue reading “I Went To The Moon And All I Got Was This Lousy T-Shirt”

New Circuits With Old Technology

Before the invention of transistors, vacuum tubes ruled the world. The only way to get amplification or switching (or any electrical control of current) back then was to use tubes. But some tube design limitations were obvious even then. For one, they produce an incredible amount of heat during normal operation, which leads to reliability issues. Tubes were difficult to miniaturize. Thankfully transistors solved all of these issues making vacuum tubes obsolete, but if you want to investigate the past a little bit there are still a few tubes on the market.

[kodera2t] was able to get his hands on a few of these, and they seem to be relatively new. This isn’t too surprising; there are some niche applications where tubes are still used. These have some improvements over their ancestors too, operating at only 30V compared to hundreds of volts for some older equipment. [kodera2t] takes us through a few circuits built with these tubes, from a simple subminiature vacuum tube radio to a more complex reflex radio.

Taking a walk through this history is an interesting exercise, and it’s worth seeing the ways that transistor-based circuits differ from tube-based circuits. If you’re interested enough to move on beyond simple radio circuits, though, you can also start building your own audio equipment with vacuum tubes.

Continue reading “New Circuits With Old Technology”

Casting A Cannon Is A Lot Harder Than You Think

We’ve seen backyard casting, and for the most part, we know what’s going on. You make a frame out of plywood or two by fours, get some sand, pack it down, and very carefully make a mold around a pattern. This is something else entirely. [FarmCraft101] is casting a bronze cannon. Sure, it’s scaled down a bit, but this is the very limit of what sanity would dictate a single person can cast out of molten metal.

This attempt at casting a cannon is more or less what you would expect from a backyard bronze casting experiment. There’s a wooden flask and a greensand mold, everything is tamped down well and there’s a liberal coating of talcum powder inside. This is a large casting, though, and this presented a problem: during the pour, the halves of the flask were only held together with a few c-clamps. This ended poorly, with molten bronze pushing against the mold and eventually flowing onto the garage floor. Doing this alone was perhaps a bad idea.

The failure of the mold meant some math was necessary, and after some quick calculations it was found that more than 300 pounds pushing the sides of the mold apart. A second pour, with the sides of the flask bound together with nylon straps, was much more successful with a good looking bronze cannon ready for some abuse with a wire wheel.

This is only the first video in the series, with the next videos covering the machining and boring out of the barrel. That’s some serious craft right there.

Continue reading “Casting A Cannon Is A Lot Harder Than You Think”