The Chocolate Must Flow This Holiday Season

After a long December of hand-coating chocolates for relatives last year, [Chaz] decided that enough was enough and built a chocolate enrobing machine to do the dirty work for him. As a side project, he built a rotary tumbler to chocolate-coat things like wasabi peas, which we assume are designated for [Chaz]’s enemies.

This build started with an off-the-shelf chocolate fountain for which [Chaz] designed and printed a new nozzle in PLA. He also knocked off the flutes that make it fountain on the band saw and removed the rest of the material on the lathe.

The conveying bit comes from a conveyor toaster oven that [Chaz] had lying around — he removed the conveyor and hooked it up to a motor from his collection using a slightly modified flex coupler.

With the chocolate enrober complete, [Chaz] moved on building to the rotary tumbler, which is made from two thrift store pans hammered together at the edges and connects up to the front of a KitchenAid mixer. The final verdict was that this did not work as well as the enrober, but it wasn’t a complete bust — wasabi peas (and most of the kitchen) got coated in chocolate.

While we’re not sure we’d use that PLA chocolate pump more than once, we sure would like to enrobe some things in chocolate, and this seems like a good way to get it done. Check out the build video after the break.

Chocolate is good for more than coating everything in sight. Speaking of sight, check out these chocolate optics.

Continue reading “The Chocolate Must Flow This Holiday Season”

Smart Coffee Replaces Espresso Machine Controller With Arduino, Sensors

A common hacker upgrade to an espresso machine is to improve stability and performance with a better temperature controller, but [Schematix]’s Smart Coffee project doesn’t stop there. It entirely replaces the machine’s controller and provides an optional array of improvements for a variety of single-boiler machines (which is most of them).

Smart Coffee isn’t free, it costs 16 NZD (about 10 USD) but there is a free demo version. There is no official support, but there are wiring guides and sources aplenty from which to purchase the various optional parts. It runs on an Arduino MEGA 2560 PRO (or similar microcontroller) and supports a wide array of additional hardware including pressure transducer, water level sensor, flow meter, OLED display, and more.

Modification of one’s espresso machine is a rewarding endeavor, but the Smart Coffee project provides a way for one to get straight to the hacking and function modifying, instead of figuring out the wiring hardware interfacing from scratch.

We’ve seen [Schematix]’s work before with a DIY induction heater which showed off thoughtful design, and it’s clear he takes his coffee at least as seriously. Check out the highly comprehensive overview and installation video for Smart Coffee, embedded just below the page break.

Continue reading “Smart Coffee Replaces Espresso Machine Controller With Arduino, Sensors”

The Briny Depths Give Wine An Edge, But How?

Though Hackaday scribes have been known to imbibe a few glasses in their time, it’s fair to say that we are not a wine critic site. When a news piece floated by about a company getting into trouble for illegally submerging crates of wine though, our ears pricked up. Why are vintners dumping their products in the sea?

Making wine, or indeed any alcoholic beverage, starts with taking a base liquor, be it grape juice, apple juice, barley malt solution, or whatever, and fermenting it with a yeast culture to produce alcohol. The result is a drink that’s intoxicating but rough, and the magic that turns it into a connoisseur’s tipple happens subsequently as it matures. The environment in which the maturation happens has a huge influence on this, which is one of many reasons why wine from the cellar of a medieval chateau tastes better than that from an industrial unit in southern England. The Californian company was attempting to speed up this process by leaving the bottles beneath the waves. Continue reading “The Briny Depths Give Wine An Edge, But How?”

Ice Wrenchers, Wrencher Chocolates, And The Vaquform DT2

What do you do when you find some friends have bought a vacuum forming machine? Make novelty chocolates and ice cubes, of course! This was my response when I had the opportunity to play with a Vaquform DT2 all-in-one vacuum forming machine, so what follows is partly a short review of an exciting machine, and partly an account of my adventures in edible merchandise creation.

The vaquform machine, on a neutral white background
The Vaquform machine in all its glory.

Vacuum forming, the practice of drawing a sheet of heat-softened plastic film over a model to make a plastic shell copy of it, is nothing new in our community. It’s most often found in hackerspaces in the form of home made vacuum forming tables, and usually requires quite a bit of experimentation to get good results. The Vaquform machine I was lucky enough to be able to try is an all in one machine that puts the whole process into a compact desktop machine of similar size to a typical 3D printer. It’s a machine of two parts with a moveable carriage between them for the plastic sheet; a vacuum table on its base, and a heater unit suspended above it. The unique selling point is that it’s an all-in-one computer controlled unit that does as much as possible for you, it simply requires the user to place a sheet in the carriage and follow the instructions.

When I first saw the machine I didn’t really have anything to try it with, so of course I resorted to producing a Wrencher or two. Because what it makes are essentially moulds, it made sense to produce something Wrencher-shaped with them, and thus the chocolate and ice plan formed. The first mould was made with laser-cut Wrenchers in 2mm acrylic, stacked on two more layers of uncut acrylic to make a bar with an inset Wrencher on top, while the second one used a 3D-printed array of larger stand-alone Wrenchers with channels between them. Would my first attempt at vacuum forming make usable moulds or not? Only one way to find out. Continue reading “Ice Wrenchers, Wrencher Chocolates, And The Vaquform DT2”

Get Your Leafy Meats

Some of us jokingly refer to our hobbies as “mad science,” but [Justin] from The Thought Emporium could be one Igor away from living up to the jibe. The latest project to come out of the YouTube channel, video also after the break, outlines a map for creating an artificial organism in their new lab. The purpose is to test how far a citizen scientist can push the boundary of bioengineering. The stated goal is to create a swimming entity with a skeleton. The Thought Emporium also has a neuron project in the works, hinting at a potential crossover.

The artifishal [sic] organism has themes at the micro and macro scale. [Justin] says, “Cells are like little nano-robots. Mainly in the sense that they just follow their built-in instructions to the best of their ability.” At the multi-cellular level, the goal is to program something to actuate muscle tissue rhythmically to sustain locomotion. The method for creating living parts is decellularization and recellularization, a technique we heard about at Hackaday Belgrade.

The Thought Emporium is improving upon its protocol which removes cells from their “scaffolding” to repopulate it with the desired type, muscle in this case. Cellular scaffolds retain the shape of whatever they were, so whatever grows on them determines what they become. Once the technique of turning a leaf into muscle fibers is mastered, the next step will be creating bones with a different cell line that will mineralize the scaffold. Optimizing the processes and combining the results may show the world what is possible with the dedication of citizen bioengineers.

Regenerative medicine is looking at replacement human-parts with similar techniques. We are eager to see fish that digest plastic.

Continue reading “Get Your Leafy Meats”

Robotic Coffee Comes To Brooklyn, But Will It Stay?

Robots are cool. Everyone knows it, and [Eater NY] highlights a coffee shop with a robotic server opening in Brooklyn. While robots able to prepare and serve drinks or food is not new, it isn’t every day a brick-and-mortar café with a robot behind the counter opens up. But expensive automation isn’t the only puzzle piece needed to make a location work.

A robotic coffee shop (like a robotic burger joint) certainly offers novelty, but can it sustain itself beyond that?

As one example, the linked article above points out that the city of New York prohibits entirely cashless businesses. Establishments must accept cash payments, and it’s unclear how the touchscreen-driven system would comply with that requirement.

There are also many tasks involved in running even a modest establishment — loading, cleaning, and maintaining for example — that can’t be realistically taken care of by an immobile robot barista. It’s unclear to what extent the robotic coffee shop will employ human staff, but it’s clear that human involvement is something that isn’t going be eliminated any time soon.

Some of you may remember the robotic burger joint that our own Brian Benchoff managed to check out, and many of his same observations come to mind. The robot burger was perhaps ahead of its time (its single location is listed as closed on Google maps with no recent activity) but maybe the robot coffee place can make it work. Still, expensive automation is only one piece of a system, and the ability to crank out a drink per minute 24/7 might not actually be the missing link.

Radio Waves Bring The Heat With This Microwave-Powered Forge

Depending on the chef’s skill, many exciting things can happen in the kitchen. Few, however, grab as much immediate attention as when a piece of foil or a fork accidentally (?) makes it into the microwave oven. That usually makes for a dramatic light show, accompanied by admonishment about being foolish enough to let metal anywhere near the appliance. So what’s the deal with this metal-melting microwave?

As it turns out, with the proper accessories, a standard microwave makes a dandy forge. Within limits, anyway. According to [Denny], who appears to have spent a lot of time optimizing his process, the key is not so much the microwave itself, but the crucible and its heat-retaining chamber. The latter is made from layers of ceramic insulating blanket material, of the type used to line kilns and furnaces. Wrapped around a 3D printed form and held together with many layers of Kapton tape, the ceramic is carefully shaped and given a surface finish of kiln wash.

While the ceramic chamber’s job is to hold in heat, the crucible is really the business end of the forge. Made of silicon carbide, the crucible absorbs the microwave energy and transduces it into radiant heat — and a lot of it. [Denny] shares several methods of mixing silicon carbide grit with sodium silicate solution, also known as water glass, as well as a couple of ways of forming the crucible, including some clever printed molds.

As for results, [Denny] has tried melting all the usual home forge metals, like aluminum and copper. He has also done brass, stainless steel, and even cast iron, albeit in small quantities. His setup is somewhat complicated — certainly more complex than the usual propane-powered forge we’ve seen plenty of examples of — but it may be more suitable for people with limited access to a space suitable for lighting up a more traditional forge. We’re not sure we’d do it in the kitchen, but it’s still a nice skill to keep in mind.

Continue reading “Radio Waves Bring The Heat With This Microwave-Powered Forge”