The basic technology of radio hasn’t changed much since an Italian marquis first blasted telegraph messages across the Atlantic using a souped-up spark plug and a couple of coils of wire. Then as now, receiving radio waves relies on antennas of just the right shape and size to use the energy in the radio waves to induce a current that can be amplified, filtered, and demodulated, and changed into an audio waveform.
That basic equation may be set to change soon, though, as direct receivers made from an exotic phase of matter are developed and commercialized. Atomic radio, which does not rely on the trappings of traditional radio receivers, is poised to open a new window on the RF spectrum, one that is less subject to interference, takes up less space, and has much broader bandwidth than current receiver technologies. And surprisingly, it relies on just a small cloud of gas and a couple of lasers to work.
Choices matter. You’ve only got one shot to fulfill the objective. A single coordinated effort is required to defuse the bomb, release the hostages, or outlast the opposition. Fail, and there’s no telling when you’ll get your next shot. This is the world that Counter-Strike presented to PC players in 1999, and the paradigm shift it presented was greater than it’s deceptively simple namesake would suggest.
The reckless push forward mantra of Unreal Tournament coupled with the unrelenting speed of Quake dominated the PC FPS mind-share back then. Deathmatch with a side of CTF (capture the flag) was all anyone really played. With blazing fast respawns and rocket launchers featured as standard kit, there was little thought put towards conservative play tactics. The same sumo clash of combatants over the ever-so inconveniently placed power weapon played out time and again; while frag counts came in mega/ultra/monster-sized stacks. It was all easy come, easy go.
Counter-Strike didn’t follow the quick frag, wipe, repeat model. Counter-Strike wasn’t concerned with creating fantastical weaponry from the future. Counter-Strike was grounded in reality. Military counter terrorist forces seek to undermine an opposing terrorist team. Each side has their own objectives and weapon sets, and the in-game economy can swing the battle wildly at the start of each new round. What began as a fun project for a couple of college kids went on to become one of the most influential multiplayer games ever, and after twenty years it’s still leaving the competition in the de_dust(2).
Even if you’ve never camped with an AWP, the story of Counter-Strike is a story of an open platform that invited creative modifications and community-driven development. Not only is Counter-Strike an amazing game, it’s an amazing story.
It would be fair to say that the Raspberry Pi team hasn’t been without its share of hardware issues, with the Raspberry Pi 2 being camera shy, the Raspberry Pi PoE HAT suffering from a rather embarrassing USB power issue, and now the all-new Raspberry Pi 4 is the first to have USB-C power delivery, but it doesn’t do USB-C very well unless you go for a ‘dumb’ cable.
Join me below for a brief recap of those previous issues, and an in-depth summary of USB-C, the differences between regular and electronically marked (e-marked) cables, and why detection logic might be making your brand-new Raspberry Pi 4 look like an analogue set of headphones to the power delivery hardware.
The fifty is not a note you’ll see very often even if you’re a Brit, it’s the one you’ll usually only come into contact with if you’ve bought a second-hand car, but the importance of this move goes beyond whether or not the note will be proffered at the bar for a foaming pint of mild ale. It’s not an honour that is handed out lightly, and it is particularly poignant in the case of Turing who despite his wartime codebreaking and genesis of the discipline of computer science was disgraced and pushed to suicide in the 1950s when he was discovered to be gay.
Will Hardware Pictured on the Bill Be as Famous as Turing Himself?
The bank has not yet set the engravers to work, but they have generated this mock-up that features alongside Turing himself a table from a Turing machine example superimposed on a picture of an early computer rack. We don’t think it’s EDSAC or Manchester Baby, it’s not a Bombe and it definitely shouldn’t be Colossus as he had little to do with it, but we are sure that among our readers will be someone who can provide a positive identification. We hope that whatever the final design may be, it does justice to Turing’s legacy.
Throughout the history of America’s human spaceflight program, there’s been an alternating pattern in regards to abort systems. From Alan Shepard’s first flight in 1961 on, every Mercury capsule was equipped with a Launch Escape System (LES) tower that could pull the spacecraft away from a malfunctioning rocket. But by the first operational flight of the Gemini program in 1965, the LES tower had been deleted in favor of ejection seats. Just three years later, the LES tower returned for the first manned flight of the Apollo program.
Mercury LES Tower
With the Space Shuttle, things got more complicated. There was no safe way to separate the Orbiter from the rest of the stack, so when Columbia made its first test flight in 1981, NASA returned again to ejection seats, this time pulled from an SR-71 Blackbird. But once flight tests were complete, the ejector seats were removed; leaving Columbia and all subsequent Orbiters without any form of LES. At the time, NASA believed the Space Shuttle was so reliable that there was no need for an emergency escape system.
It took the loss of Challenger and her crew in 1986 to prove NASA had made a grave error in judgment, but by then, it was too late. Changes were made to the Shuttle in the wake of the accident investigation, but escape during powered flight was still impossible. While a LES would not have saved the crew of Columbia in 2003, another seven lives lost aboard the fundamentally flawed Orbiter played a large part in President George W. Bush’s decision to begin winding down the Shuttle program.
In the post-Shuttle era, NASA has made it clear that maintaining abort capability from liftoff to orbital insertion is a critical requirement. Their own Orion spacecraft has this ability, and they demand the same from commercial partners such as SpaceX and Boeing. But while all three vehicles are absolutely bristling with high-tech wizardry, their abort systems are not far removed from what we were using in the 1960’s.
Let’s take a look at the Launch Escape Systems for America’s next three capsules, and see where historical experience helped guide the design of these state-of-the-art spacecraft.
If you use just about any modern command line, you probably understand the idea of pipes. Pipes are the ability to connect the output from one program to the input of another. For example, you can more easily review contents of a large directory on a Linux machine by connecting two simple commands using a pipe:
ls | less
This command runs ls and sends its output to the input of the less program. In Linux, both commands run at once and output from ls immediately appears as the input of less. From the user’s point of view it’s a single operation. In contrast, under regular old MSDOS, two steps would be necessary to run these commands:
ls > SOME_TEMP_FILE
less < SOME_TEMP_FILE
The big difference is that ls will run to completion, saving its output a file. Then the less command runs and reads the file. The result is the same, but the timing isn’t.
You may be wondering why I’m explaining such a simple concept. There’s another type of pipe that isn’t as often used: a named pipe. The normal pipes are attached to a pair of commands. However, a named pipe has a life of its own. Any number of processes can write to it and read from it. Learn the ways of named pipes will certainly up your Linux-Fu, so let’s jump in!
There’s a story that goes back to the 1980s or so about an engineering professor who laid down a challenge to the students of his automation class: design a robot to perform the most mundane of household tasks — washing the dishes. The students divided up into groups, batted ideas around, and presented their designs. Every group came up with something impressive, all variations on a theme with cameras and sensors and articulated arms to move the plates around. The professor watched the presentations respectfully, and when they were done he got up and said, “Nice work. But didn’t any of you idiots realize you can buy a robot that does dishes for $300 from any Sears in the country?”
The story may be apocryphal, but it’s certainly plausible, and it’s definitely instructive. The cultural impression of robotics as a field has a lot of ballast on it, thanks to decades of training that leads us to believe that robots will always be at least partially anthropomorphic. At first it was science fiction giving us Robbie the Robot and C3PO; now that we’re living in the future, Boston Dynamics and the like are doing their best to give us an updated view of what robots must be.
But all this training to expect bots built in the image of humans or animals only covers a narrow range of use cases, and leaves behind the hundreds or thousands of other applications that could prove just as interesting. One use case that appears to be coming to market hearkens back to that professor’s dishwashing throwdown, and if manufacturers have their way, robotic dishwashers might well be a thing in the near future.