Michelson Interferometer Comes Home Cheap

We suspect there are three kinds of people in the world. People who have access to a Michelson Interferometer and are glad, those who don’t have one and don’t know what one is, and a very small number of people who want one but don’t have one. But sinceĀ [Longest Path Search] built one using 3D printing, maybe the third group will dwindle down to nothing.

If you are in the second camp, a Michelson interferometer is a device for measuring very small changes in the length of optical paths (oversimplifying, a distance). It does this by splitting a laser into two parts. One part reflects off a mirror at a fixed distance from the splitter. The other reflects off another, often movable, mirror. The beam splitter also recombines the two beams when they reflect back, producing an interference pattern that varies with differences in the path length between the splitter and the mirror. For example, if the air between the splitter and one mirror changes temperature, the change in the refraction index will cause a minute difference in the beam, which will show up using this instrument.

The device has been used to detect gravitational waves, study the sun and the upper atmosphere, and also helped disprove the theory that light is transmitted through a medium known as luminiferous aether.

Continue reading “Michelson Interferometer Comes Home Cheap”

Seeing Sound With A Laser

You can hear sound, of course, but what if you could see it with a laser? That’s what [Goosetopherson] thought about, and thus a new project that you can see in the video below was born.

The heart of the project is an I2S chip and an ESP32. Sound energy deforms a plastic film that causes a mirror to move. The moving mirror alters the course of the laser’s beam. Continue reading “Seeing Sound With A Laser”

Mass Spectrometer Tear Down

If you have ever thought, “I wish I could have a mass spectrometer at home,” then we aren’t very surprised you are reading Hackaday. [Thomas Scherrer] somehow acquired a broken Brucker Microflex LT Mass Spectrometer, and while it was clearly not working, it promised to be a fun teardown, as you can see in the first part of the video below.

Inside are lasers and definitely some high voltages floating around. This appears to be an industrial unit, but it has a great design for service. Many of the panels are removable without tools.

Continue reading “Mass Spectrometer Tear Down”

Step Into My Particle Accelerator

If you get a chance to visit a computer history museum and see some of the very old computers, you’ll think they took up a full room. But if you ask, you’ll often find that the power supply was in another room and the cooling system was in yet another. So when you get a computer that fit on, say, a large desk and maybe have a few tape drives all together in a normal-sized office, people thought of it as “small.” We’re seeing a similar evolution in particle accelerators, which, a new startup company says, can be room-sized according to a post by [Charles Q. Choi] over at IEEE Spectrum.

Usually, when you think of a particle accelerator, you think of a giant housing like the 3.2-kilometer-long SLAC accelerator. That’s because these machines use magnets to accelerate the particles, and just like a car needs a certain distance to get to a particular speed, you have to have room for the particle to accelerate to the desired velocity.

A relatively new technique, though, doesn’t use magnets. Instead, very powerful (but very short) laser pulses create plasma from gas. The plasma oscillates in the wake of the laser, accelerating electrons to relativistic speeds. These so-called wakefield accelerators can, in theory, produce very high-energy electrons and don’t need much space to do it.

Continue reading “Step Into My Particle Accelerator”

King Tut, with less resolution than he's had since Deluxe Paint

Volumetric Display With Lasers And Bubbly Glass

There’s a type of dust-collector that’s been popular since the 1990s, where a cube of acrylic or glass is laser-etched in a three-dimensional pattern. Some people call them bubblegrams. While it could be argued that bubblegrams are a sort of 3D display, they’re more like a photograph than a TV. [Ancient] had the brainwave that since these objects work by scattering light, he could use them as a proper 3D video display by controlling the light scattered from an appropriately-designed bubblegram.

Appropriately designed, in this case, means a point cloud, which is not exactly exciting to look at on its own. It’s when [Ancient] adds the colour laser scanning projector that things get exciting. Well, after some very careful alignment. We imagine if this was to go on to become more than a demonstrator some sort of machine-vision auto-aligning would be desirable, but [Ancient] is able to conquer three-dimensional keystoning manually for this demonstration. Considering he is, in effect, projection-mapping onto the tiny bubbles in the crystal, that’s impressive work. Check out the video embedded below.

With only around 38,000 points, the resolution isn’t exactly high-def, but it is enough for a very impressive proof-of-concept. It’s also not nearly as creepy as the Selectric-inspired mouth-ball that was the last [Ancient] project we featured. It’s also a lot less likely to take your fingers off than the POV-based volumetric display [Ancient] was playing DOOM on a while back.

For the record, this one runs the same DOOM port, too– it’s using the same basic code as [Ancient]’s other displays, which you can find on GitHub under an MIT license.

Thanks to [Hari Wiguna] for the tip.

Continue reading “Volumetric Display With Lasers And Bubbly Glass”

[Usagi Electric] brandishing his raygun

Barcodes, “Lasers”, And Fourier Transforms

The Bomem DA3 is a type of Fourier transform spectrometer used for measuring various spectral data and [Usagi Electric] has one. On his quest to understand it he runs down a number of rabbit holes, including learning about various barcode formats, doing a teardown of the Telxon LS-201 barcode scanner, and exploring how lasers work. That’s right: lasers!

His reason for looking at the Telxon LS-201 barcode scanner is that it has the same type of helium-neon laser as his Bomem DA3 uses. Since he’s learning about barcode scanners he thinks it’s prudent to learn about barcode formats too, and he has a discussion with our very own Adam Fabio about such things, including the UPC-A standard barcodes.

Continue reading “Barcodes, “Lasers”, And Fourier Transforms”

A photo of the transmitter and receiver.

Teardown Of HP Optical Link And Signal Investigations Using Siglent Technology

Anything with a laser has undeniable hacker appeal, even if the laser’s task is as pedestrian as sending data over a fiber optic cable. [Shahriar] from [The Signal Path] must agree, and you can watch as he tears down and investigates a fiber optic link made from old HP equipment in the video below.

He starts with an investigation of the block diagram of the transmitter. In the transmitter, the indium gallium arsenide phosphide laser diode emits light with a 1310-nanometer wavelength. Thermal characteristics in the transmitter are important, so there is thermal control circuitry. He notes that this system only works using amplitude modulation; phase modulation would require more expensive parts. Then it’s time to look at the receiver’s block diagram. Some optics direct the light signal to a PIN diode, which receives the signal and interfaces with biasing and amplifying circuitry.

Continue reading “Teardown Of HP Optical Link And Signal Investigations Using Siglent Technology”