Solar Display Case Is A Portable Triple Monitor Setup

They say once you start using twin monitors on the desktop, you’ll never want to go back. It’s even worse when you upgrade to three or more. However, it can be difficult to take such a set up on the road. Desiring better productivity on the go is what spurred [Brian Whitsett] to develop the Solar Display Case to solve this problem.

The Solar Display Case aims to pack three 17″ full-size monitors into a portable waterproof case. Brian has already built a prototype, which puts the monitors on folding arms so that they can be quickly stowed or deployed when needed.

The build also relies on solar power to charge batteries, in order to make the solution as portable as any laptop or other hardware you may be using with it. It’s no good having three mains-powered monitors sitting in the field with no AC power, after all. [Brian] aims to use a flexible solar panel to make the most of the surface area of the deployed assembly, for maximum power generation.

It’s a great project, and one we’d love to see fleshed out to the fullest. Imagining a briefcase that folds out into a triple-monitor workstation is exciting, and it looks like [Brian] is well on the way to making it a reality.

Light Bulb Plant Propagation Station Is A Bright Idea

We’ve always enjoyed having a few indoor plants around the Hackaday dungeon because they just make the days more cheerful. Apparently there’s a big craze for them right now, which has led to price increases of things like propagation stations — places where cuttings from mature plants go to grow a root system before getting planted in dirt. Many plants will root readily in water, and it’s better for them to start out this way because soil can come with a bunch of problems.

This goes really well with the older craze of Edison-style light bulbs. We’re glad we never bothered with those because [JGJMatt] says they don’t last long at all. The bulbs themselves are really nice looking, so [JGJMatt] decided to turn a few of them into hanging water propagation stations. After cleaning out the bulb and embiggening the opening, [JGJMatt] formed a holder by applying a torch to brass rod. This dulls the brass, so they shined it up with steel wool and some automotive polishing compound. Then it’s time for some simple macrame to hang it with, because it will soon be full of water.

Does the handle sound familiar? It ought to — [JGJMatt]’s elegant builds have graced these pages a few times before.

Swamp Gas Will Get You Home

The energy to power a motorcycle has to come from somewhere, be it a power station, a solar panel, a gas station, or a hydrogen plant. There have been many ways to reduce the cost of extracting that energy over the years, but we think [Gijs Schalkx] may have hit upon one of the cheapest and simplest we’ve ever seen. It may not be free gas, but it is free swamp gas! His Uitsloot (we think that’s Dutch for “From the ditch”) motorcycle gets its power from methane generated in the sediment at the bottom of the Netherlands’ many waterways.

At its heart is a venerable Honda Cub moped, we’re guessing of the 50 cc version. On its pillion is a large clear container, inside of which is a balloon filled with gas. He doesn’t go into details in the video below the break, but we’re guessing he’s injecting the gas into the Honda’s airbox from which the engine can suck the gas/air mixture. We like his gas collector, a large inner tube with a collector funnel in its centre that floats on the water. He dons some waders and pokes the sediment with a long stick to release bubbles of methane. He then uses a long hose and a bicycle pump to inflate the balloon with the collected gas. We see him zipping around the streets of Arnhem under this unconventional power, though sadly we don’t see how far a full balloon will take him.

There’s a discussion to be had as to the environmental credentials of this project, but we think given that the naturally generated methane which would find its way into the atmosphere eventually has a greater effect on the climate than the CO2 produced by the engine, he may be onto a winner. It is however not a system that would scale to more than a few drivers poking at bogs with a stick.

Continue reading “Swamp Gas Will Get You Home”

If Society Is In Danger Of Collapse, Here’s How We Should Do Our Bit

If you’ve been following the news, you can’t have missed the series of floods, droughts, and wildfires that have occurred seemingly in all corners of the world. Coming on the heels of a Northern Hemisphere winter that had its own extreme weather events, it would be perhaps foolhardy not to by now take climate change seriously. You may also have seen the news about a return to a 1970s paper in which MIT crystal-ball-gazers predicted the collapse of our civilisation in the mid-21st century, and a review based upon the empirical data gathered since then which concluded that we could be right on track with that prediction set to happen in about 2040.

It’s sobering stuff, and something which could so easily form the basis of many a Hollywood apocalyptic disaster movie. But sitting here in 2021 amid extreme weather events and a global pandemic it’s certainly something to think about. It’s not as though we’re riding biogas-powered weapon cars through the post-apocalyptic desert just yet though, we still have a chance to do something to avert catastrophe and no doubt over the next decade a raft of changes will reduce our CO2 impact and make our infrastructure more resilient to stave off any coming crises.

Our mind was turned to the halcyon time before the pandemic, to the Danish BornHack hacker camp back in August 2019. One of the talks at the event came from [Igor Nicolic], whose day job as an academic with Delft University of Technology takes him into the study of ecology and sustainability. In it he looks at the current state of global sustainability, and identifies the roles which the hardware hacker community could play in an uncertain future. It’s a fascinating lecture from an expert in the field and it’s well worth a watch and taking note of his points, so we’ve placed it below the break. Continue reading “If Society Is In Danger Of Collapse, Here’s How We Should Do Our Bit”

Live Energy Monitor Helps Plan Power-Hungry Appliance Use

There are a lot of good reasons to have a better understanding of one’s household power use, and that is especially true for those that do their own solar power collection. For example, [Frederick] determined that it would be more efficient to use large appliances (like a dishwasher or washing machine) when there was excess solar power available, but the challenge was in accessing the right data in a convenient way. His Raspberry Pi-based live energy monitor was the solution, because it uses an LED matrix to display live energy data that can be consulted at a glance.

Interestingly, this project isn’t about hacking the power meter. What this project is really about is conveniently accessing that data when and where it is best needed. [Frederick] has a digital power and gas meter with the ability to accept a small wireless dongle. That dongle allows a mobile phone app to monitor power usage, including whether power is being taken from or exported to the grid.

Since [Frederick] didn’t want to have to constantly consult his mobile phone, a Raspberry Pi using a Pimoroni Unicorn HAT HD acts as a glanceable display. His Python script polls the power meter directly over WiFi, then creates a live display of power usage: one LED for every 250 W of power, with the top half of the display being power used, and the bottom half representing power exported to the grid. Now the decision of when to turn on which appliances for maximum efficiency is much easier, not by automating the appliances themselves, but simply by displaying data where it needs to be seen. (This kind of thing, incidentally, is exactly the idea behind the Rethink Displays challenge of the 2021 Hackaday Prize.)

As for those of us without a digital power meter that makes it easy for residents to access power data? It turns out there is no reason a power meter’s wireless service interface can’t be sniffed with RTL-SDR.

Recycling Will Be Key To The Electric Vehicle Future

Electric vehicles have become a mainstay in the global automotive marketplace, taking on their gasoline rivals and steadily chewing out their own slice of market share, year after year. Government mandates to end the sale of polluting internal combustion engine vehicles and subsidies on cleaner cars promise to conspire to create an electric vehicle boom.

The result should be much cleaner air, as generating electricity in even the dirtiest power plants is far cleaner and more efficient than millions of individual engines puttering about the place. However, if the electric car is to reign supreme, they’ll need to be built in ever greater numbers. To do that is going to take huge amounts of certain materials that can be expensive and sometimes in very limited supply. Thus, to help support the EV boom, recycling of these materials may come to play a very important role.

Continue reading “Recycling Will Be Key To The Electric Vehicle Future”

TerraPower’s Natrium: Combining A Fast Neutron Reactor With Built-In Grid Level Storage

Most new nuclear fission reactors being built today are of the light water reactor (LWR) type, which use water for neutron moderation into thermal neutrons as well as neutron capture. While straightforward and in use since the 1950s in commercial settings, they are also essentially limited to uranium (U-235) fuel. This is where fast neutron reactors are highly attractive.

Fast neutron reactors can also fission other fissile elements, covering the full spectrum of neutron cross sections. TerraPower’s Natrium reactor is one such fast reactor, and it’s the world’s first fast reactor that not only targets commercial use, but also comes with its own grid-level storage in the form of a molten salt reservoir.

The upshot of this is that not only can these Natrium reactors use all of the spent LWR fuel in the US and elsewhere as their fuel, but they should also be highly efficient at load-following, traditionally a weak spot of thermal plants.

TerraPower and its partners are currently looking to build a demonstration plant in Wyoming, at the site of a retiring coal plant. This would be a 345 MWe (peak 500 MWe) reactor.

Continue reading “TerraPower’s Natrium: Combining A Fast Neutron Reactor With Built-In Grid Level Storage”