A composite of a disassembled and reassembled Model F keyboard

Model F Keyboard Restoration Goes The Extra Mile

The IBM Model F keyboard should need no introduction. Famed for its buckling spring key mechanisms, the Model F is lusted over for its satisfying typing experience and Armageddon-proof build quality. First introduced in 1981, many of these keyboards will now naturally require basic maintenance. However, [Epictronics] recently went a step further and restored a Model F to like-new condition.

Missing keycaps were the least of his worries, as both new and old replacements are relatively easy to come by. [Epictronics] was more concerned about the forty-year-old foam sandwiched tight inside the keyboard, most likely having long since degraded. Apart from being plain gross, the decaying foam has the potential to foul the buckling spring switches. After taking apart the body and removing the ‘disgusting’ foam pad, a replacement was forged from neoprene and a handy-dandy hole punch.

Disassembly of the keyboard case required the gentle touch of a mallet, and reassembly needed similarly inappropriate tools. As demonstrated in this vintage clip from IBM, keyboard assembly was (and still is) performed automatically by robots, driven by an IBM Series/1 minicomputer. These robots were equally impressive for their precision and strength. Without access to IBM’s aptly named ‘closing tool’ and various other robotic helpers, [Epictronics] had to settle for pool noodles and a comically large clamp during reassembly, mixed with sheer determination.

Other neat tricks in the video include applying heat to reform the coiled keyboard cable, and using car polish to clean the case plastics. The latter has the potential to make things worse, so a delicate hand is needed to maintain the textured plastic.

We recently covered another Model F restoration, and it’s exciting to see so many dedicated hackers keeping these keyboards clickety-clacking well into the 21st century.

Continue reading “Model F Keyboard Restoration Goes The Extra Mile”

Python Provides Classic Basic

Back in the late 1970s and early 1980s when you turned on a PC, more often than not, you’d get a Basic prompt. Most people would then load a game from a tape, but if you were inclined to program you could just start writing. [Richpl] wanted that same experience and thus PyBasic was born. Along with some other Github contributors, the system has grown quite a bit and would be a good start at porting classic games or creating a replica vintage computer.

The interpreter lacks specialized hardware-specific features such as sound and graphics, of course, but then again, you could add them. It does have file I/O and also includes some interesting features like an analog of C’s ternary operator.

Continue reading “Python Provides Classic Basic”

Kid Friendly MP3 Cube

3D Printed Preschooler Proof MP3 Player Takes A Beat-ing

Prototyping new ideas can be a lot of fun, but putting new projects in a durable enclosure can be a difficulty. This is especially the case when the user of this product is one of the most destructive forces in nature: A toddler! This is the circumstance that [blue blade] found himself in when he wanted to build a durable MP3 player for his grandson, and you can see the results of his work below the break.

The hardware is simple: A 16850 lithium-ion battery powers an MP3 Decoder/Amplifier module that plays MP3s stored on a Micro SD card. A speaker, power switch, and micro USB powered battery charger complete the build. What stands out most is the enclosure. Why?

When children are involved, durability isn’t a matter of product lifetime, it’s also a matter of safety. Items that are easily broken aren’t just useless, they can be dangerous. With this in mind, [blue blade] built a brightly colored enclosure with extra thick walls joined by metal bolts. Externally, a rounded cover bolts over the charger connector and Micro SD card slot. The only other protrusion is a lighted rocker switch for powering the MP3 player on and off.

Continue reading “3D Printed Preschooler Proof MP3 Player Takes A Beat-ing”

A French Minitel terminal becomes a Raspberry Pi-powered mini laptop.

Minitel Terminal Becomes Mini Laptop

In 1980, France took a step into the future when the telecom companies introduced the Minitel system — a precursor to the Web where users could shop, buy train tickets, check stocks, and send and receive electronic mail through a small terminal. Minitel still had 10 million monthly connections in 2009, but the service was discontinued in 2012.

The keyboard of a French Minitel terminal is wired up to an Arduino Pro Micro.So, you can imagine how many Minitel terminals must be floating around at this point. [Gautchh] picked one up at a garage sale a while back and converted it into a battery-powered laptop for taking notes in class. Luckily for us, [Gautchh] recently open-sourced this project and has given us a wiring diagram, STLs, BOM, and a good look into the build process.

[Gautchh] started by gutting the Minitel, but saved the power button and the très chic power indicator that looks like a AA cell. The new 10.4″ LCD screen is held in place with four 3D-printed corner blocks and a bit of hot glue, and the original keyboard (which we’d love to clack on) is now wired up to an Arduino Pro Micro. The main brain — a Raspberry Pi 3B — is easily accessible through a handy little hatch in the back. Well, it looks like we’ve got a new ebay alert to set up.

In the mood for more AZERTY goodness? Check out this gallery of French computers, or a more traditional take on a Minitel with a Raspberry Pi.

Successive approximation register ADC

Homebrew Circuit Explores The Mysteries Of Analog-to-Digital Conversion

When it comes to getting signals from an analog world into our computers, most of us don’t give much thought to how the hardware that does the job works. But as it turns out, there are a number of ways to skin the analog to digital conversion cat, and building your own homebrew successive approximation register ADC is a great way to dispel some of the mystery.

From his description of the project, it’s clear that [Mitsuru Yamada] wasn’t looking to build a practical ADC, but was more interested in what he could learn by rolling his own. A successive approximation register ADC works by quickly cycling through all possible voltage levels in its input range, eventually zeroing in on the voltage of the input signal at that moment and outputting its digital representation. The video below shows how the SAR ADC works visually, using an oscilloscope to show both the input voltage and the output of the internal R-2R DAC. The ADC has an input range of 0 V to 5 V and seven bits of resolution and uses nothing but commonly available 74xx series logic chips and a couple of easily sourced analogs for the sample-hold and comparator section. And as usual with one of his projects, the build quality and workmanship are impeccable.

We love these sorts of projects, which are undertaken simply for the joy of building something and learning how it works. For more of [Yamada-san]’s projects, check out his 6502-based RPN calculator, or the serial terminal that should have been.

Continue reading “Homebrew Circuit Explores The Mysteries Of Analog-to-Digital Conversion”

Can We Repurpose Old Wind Turbine Blades?

Wind turbines are a fantastic, cheap, renewable source of energy. However, nothing lasts forever, and over time, the blades of wind turbines fatigue and must be replaced. This then raises the question of what to do with these giant waste blades. Thankfully, a variety of projects are exploring just those possibilities.

A Difficult Recycling Problem

Around 85% of a modern wind turbine is recyclable. The problem is that wind turbine blades currently aren’t. The blades last around 20 to 25 years, and are typically made of fiberglass or carbon fiber. Consisting of high-strength fibers set in a resin matrix, these composite materials are incredibly difficult to recycle, as we’ve discussed previously. Unlike metals or plastics, they can’t just be melted down to be recast as fresh material. Couple this with the fact that wind turbine blades are huge, often spanning up to 300 feet long, and the problem gets harder. They’re difficult and expensive to transport and tough to chop up as well.

Continue reading “Can We Repurpose Old Wind Turbine Blades?”

Hackaday Podcast 139: Furter Burner, Glowing Potato Peeler, Hacked Smartwatch, And The Last Atlas

Hackaday editors Tom Nardi and Elliot Williams bring you up to speed on the most interesting stories of the week. Hackaday’s Remoticon and Germany’s Chaos Communication Congress are virtual again this year, but the Vintage Computer Festival will be live. We’ll also talk about ocean-going drones, the recreation of an old-school light bulb with a potato peeler, cheap smart watches with hidden potential, and sanding down shady modules to figure out just how you’ve been scammed. Stick around for some thoughts on turning real-estate signs into a handy prototyping material, and to find out why some very impressive Soviet tech is getting the boot from America’s space program.

Take a look at the links below if you want to follow along, and as always, tell us what you think about this episode in the comments!

Direct download (52.775158 MB)

Continue reading “Hackaday Podcast 139: Furter Burner, Glowing Potato Peeler, Hacked Smartwatch, And The Last Atlas”