Making A Locket From A Coin

Some countries have strict laws around the destruction or alteration of issued currency, but then again, some countries don’t. Citizens of those in the latter category may enjoy undertaking a build similar to this locket created by [Elier Olivos], crafted from a large coin.

A compass is first used to mark out a line on the coin’s perimeter, before it is cut in half with a fret saw. Once the two halves of the coin are smoothed out, it’s then time to heat them and quench them so they’re more malleable for pounding into a slightly domed shape. Metal rings are then fabricated and added to each half to give the locket some depth.

A hinge is then carefully made and fixed into the edges of the coin halves, giving the closed coin an almost seamless outside appearance. A small latch installed on the inside helps hold the locket closed. The final touches are to attach a loop for affixing the locket to a chain for the wearer, and to polish the inside of the locket up to a mirror shine.

[Elier] makes the build look easy through a combination of his amazing skills with his hands and the help of a some esoteric tooling. It can be very relaxing to take in a video of a master at work, and we’ve seen some great examples recently. Video after the break.

Continue reading “Making A Locket From A Coin”

You Can Build Your Own Sushi Train

According to [Garage Avenger], in Norwegian culture it’s considered impolite to ask for things to be passed across a dinner table, so much standing and reaching is the course of the day. To assist in reducing the effort required, he set about building his own sushi train device to solve the problem, giving equal condiment access to all!

The system is capable of taking plenty of weight from heavy dinner bowls, altogether quite different than relatively-light sushi dishes on plastic plates.

The system is actually relatively simple, relying on a Wemos D1 Mini controlled by a Blynk app to run the show. Mechanically, a large drive gears is turned by a stepper motor to drive the wooden conveyor chain that actually makes up the “sushi train.” The chain links ride on a bed of Norwegian one krone coins acting as rollers.

The result is a working table-sized sushi train that really does carry plates around well. It didn’t stop people leaning over [Garage Avenger] at the dinner table, but it makes a great centerpiece on the dinner table for sharing dishes like tacos.

We’ve seen similar table technology, the Lazy Susan, around these parts before. Video after the break.
Continue reading “You Can Build Your Own Sushi Train”

Very Fancy Nail Is Actually A Secret Jewlery Stash

Typically, nails are purpose-built things made to hold bits of wood together, with their entire design focused on that purpose. However, [W&M Levsha] went in much the other direction, crafting one very fancy expensive nail in what we can only explain as a masterful demonstration of their skills.

The build starts with a piece of brass tube, which is engraved with a delicate pattern on an automated lathe. After clean up, the spiralling lines are attractive on the polished brass.A plug is then made for the end of the tube, which gets filed into a point to resemble a nail, hiding the seam between the plug and the tube.

The tube is then threaded to accept a nail head that screws into the top, allowing the “nail” to act as a fancy little stash, which [W&M Levsha] shows off by placing a bracelet inside. The project is finished by crafting a stunning wooden box to hold the fancy nail.

We’ve seen [W&M Levsha]’s handywork before; the cap-gun cigarette lighter was a similarly impressive feat of machining and craftsmanship. Video after the break.

Continue reading “Very Fancy Nail Is Actually A Secret Jewlery Stash”

Building A Pendulum Clock Out Of Lego

Pendulum clocks aren’t used quite as often these days as their cumbersome mechanics and timekeeping abilities have long been outshone by electronic alternatives. However, they’re still fun and they do work, so [PuzzLEGO] set about building a working example with Lego.

The rear view reveals the escapement built from Lego Technic parts.

The core of the clock is the escapement, a linkage which the pendulum can only turn in one direction. As the pendulum swings once per second, it lets the escapement gear turn one notch forward at a time, turning the gears of the clock which drive the hands. It’s powered with a falling weight in the form of a drink bottle full of water, which turns the gears of the clock via a chain.

The clock can only run for approximately an hour, so it’s set up with a second and minute hand instead of the more usual minute and hour hand. However, with the pendulum tuned to the appropriate length and the weight fitted, it pleasantly ticks and tocks the seconds away.

We’ve seen other great builds from [PuzzLEGO] before, too, like this inventive Rubik’s Cube build. Video after the break.

Continue reading “Building A Pendulum Clock Out Of Lego”

G4 IMac Gets An M1 Heart Transplant

The second-generation iMac was a big departure from the original brightly-colored release. The chunky CRT aesthetic was dead, replaced with a sleek design featuring a slim LCD monitor on a floating arm. [Connor55] recently laid his hands on such a machine, and decided it needed a transplant of some modern M1 hardware.

There’s a lot going on in there.

The machine, as it came into his possession, lacked WiFi, and had a disc drive struggling to open its own tray, so it made a good candidate for hacking. Out came the original motherboard and drives, leaving room for a motherboard from a Mac Mini to be substituted in, with the powerful new M1 system-on-chip onboard.

First up, the screen had to be converted to use DVI input, with a guide from [Dremel Junkie] helping out with that. The Mac Mini motherboard was then prepped to install in the iMac’s dome-shaped housing; notably, the entire board is smaller than the stock iMac G4’s hard drive. It still took plenty of cramming, with a multitude of adapters finagled and massaged to fit inside the original housing.

It’s a very completionist build; even features like the original power button and optical drive still work. It took some fiddling, but the display and backlight operate properly as per the original functionality, too.

Apple’s tasteful industrial design has always proved popular with modders. We’ve seen similar builds before over the years, from Intel NUCs stuffed into G4 iMacs to classic Macs outfitted with iPad hardware. It’s always satisfying to see vintage hardware given a new lease of life with modern grunt!

USB Temperature Logger With Some Extra Tricks

Many of us electronics hacker types tend to have at least the same common equipment on our benches, namely a multimeter, an oscilloscope, some sort of adjustable power supply, and maybe a logic analyzer. These are great tools covering many bases, but dealing with temperature measurements is often neglected. A sudden need for such often results in just buying a either dedicated measurement unit, or some cheap eBay thermocouple board and just rolling with a few hacks. [Jana Marie Hemsing] had a need for measuring the thermal side of things, and got fed up with hacking with piles of boards, and designed herself a proper instrument for the task.

The result is a very tidy four-channel thermocouple frontend, feeding the data into the host computer via USB. Each of the four channels can either be a K-type input or a NTC thermistor input, decided at board assembly time, but you could just build two units with four channels of each and cover all bases. The K-type thermocouple input is based around the MAX31855 series device. While the ‘KASA’ suffixed device is probably most common, if you need to dedicate some channels to handling one of the other six or so other common thermocouple types, that just needs the appropriate MAX31855 variant dropping in, and you’re good to go.

For the controller, [Jana] has chosen the common STM32F0x microcontroller, which handles all the USB protocol side of things. The extra functionality added allows direct driving of a heater controller via the DRV8837 H-Bridge, with a extra few open collector outputs for other things you might want to drive. This allows the logger to function as a kind-of thermal IO device. Firmware is written in good old fashioned STM32 HAL, using the standard STM32CubeMX and the GCC toolchain. It looks like the Makefile came via the STM32 Project Generator route. The firmware has a neat trick up its sleeve too; with a flick of the switch on the back, the firmware can switch between outputting CSV data over a standard USB CDC link (a virtual serial port), or it can present a SCPI terminal interface, enabling integration into existing SCPI-based test flows. Nice work!

We’ve seen a few logging projects on these fair pages, like this battery powered ESP32 logger device. If IoT logging is more your thing, here you go.

Pop Goes The Mechanical Ping Pong Sculpture

In the waiting rooms of some dentists or doctors, you might have seen a giant metal ball rolling around in a large glass case. While it sure beats looking through those magazines, the sculpture can’t have come cheap. But not all of us want to pay high-end prices for fun toys. As a more cost-effective alternative, [JBV Creative] built an awesome 3D-printed ping pong sculpture.

The basic concept is the same as those fancy sculptures: a ball goes up, moves through some sort of impressive range of motion as it makes its way back down, and some sort of drive mechanism pushes it back to repeat the cycle anew. The design of this particular art piece is no different. A ping-pong ball falls down a funnel into a queue where balls are slowly loaded via a 12-way Geneva mechanism. An Archimedes spiral cam charges an elastic band that yeets the ball up and out of the track and sends it sailing through the air and down inside the funnel mentioned earlier. Everything on this sculpture is 3D-printed aside from the rubber bands and the ping pong balls.

What’s tricky about these sorts of things is the precision required both in printing and in design. It needs to run for hundreds if not thousands of hours and make no mistake. Making something work correctly 99% of the time is hard, but that last 1% can be almost as much work as that first 99%. [JBV Creative]’s first attempt had a catapult mechanism and he printed and tried out several scoops, but none gave the trajectory that he was looking for.

[JBV Creative] tried a plunger mechanism, but without a counterbalance weight providing the power, it just didn’t have enough oomph to launch the ball. Luckily, holes were included in the design, so it was relatively easy to adapt what had already been printed to use rubber bands instead. An additional goal was to have no visible fasteners, so everything needed to be mounted from the back. Check it out in action after the break.

It’s an incredible project that took serious thought, dedication, and in [JBV Creative]’s words, plenty of CAD twirling. It’s a great lesson in iterating and experimentation. If your talents are more soldering-based rather than CAD-based, perhaps a circuit sculpture is more up your alley?

Continue reading “Pop Goes The Mechanical Ping Pong Sculpture”