Modern Dance Or Full-Body Keyboard? Why Not Both!

If you felt in your heart that Hackaday was a place that would forever be free from projects that require extensive choreography to pull off, we’re sorry to disappoint you. Because you’re going to need a level of coordination and gross motor skills that most of us probably lack if you’re going to type with this full-body, semaphore-powered keyboard.

This is another one of [Fletcher Heisler]’s alternative inputs projects, in the vein of his face-operated coding keyboard. The idea there was to be able to code with facial gestures while cradling a sleeping baby; this project is quite a bit more expressive. Pretty much all you need to know about the technical side of the project can be gleaned from the brilliant “Hello world!” segment at the start of the video below. [Fletcher] uses OpenCV and MediaPipe’s Pose library for pose estimation to decode the classic flag semaphore alphabet, which encodes characters in the angle of the signaler’s extended arms relative to their body. To extend the character set, [Fletcher] added a squat gesture for numbers, and a shift function controlled by opening and closing the hands. The jazz-hands thing is just a bonus.

Honestly, the hack here is mostly a brain hack — learning a complex series of gestures and stringing them together fluidly isn’t easy. [Fletcher] used a few earworms to help him master the character set and tune his code; the inevitable Rickroll was quite artistic, and watching him nail the [Johnny Cash] song was strangely satisfying. We also thoroughly enjoyed the group number at the end. Ooga chaka FTW.

Continue reading “Modern Dance Or Full-Body Keyboard? Why Not Both!”

A New Gaming Shell For A Mouse

For some gamers, having a light fast polling mouse is key. [Ali] of [Optimum Tech] loved his 23-gram mouse but disliked the cord. Not seeing any options for a comparable wireless mouse, he decided to make one himself.

Trying to shortcut the process, he started with an existing wireless mouse from Razer weighing in at a hefty 58 grams. The PCB on its own weighed in at 11 grams and after swapping to a smaller battery, [Ali] had a budget of 10 to 15 grams for the shell. Here is where the meat of this project lives. The everyday objects in your life like the poles that hold up traffic signals or the device you’re reading this article on are looked at and used without much thought into why they are what they are. The design of everyday things is a surprisingly deep field and designing a curvy mouse is no exception. With a 3d version of the PCB, he went through several iterations of how to lay out the mouse triggers. The scroll wheel was removed as he didn’t need it for the game he was playing.

The shell was printed in resin and came out great. [Ali] found himself with an ultralight 4000hz wireless mouse that was thoroughly enjoyable. It’s a great example of someone diving in and designing something for their personal use. Whether it’s a mouse or a chair, we love anyone taking on a design challenge. Video after the break.

Continue reading “A New Gaming Shell For A Mouse”

Showing the dock PCB with a Pi Zero attached and wired up onto it

Is Your USB-C Dock Out To Hack You?

In today’s installment of Betteridge’s law enforcement, here’s an evil USB-C dock proof-of-concept by [Lachlan Davidson] from [Aura Division]. We’ve seen malicious USB devices aplenty, from cables and chargers to flash drives and even suspicious USB fans. But a dock, however, is new. The gist is simple — you take a stock dock, find a Pi Zero W and wire it up to a USB 2.0 port tapped somewhere inside the dock. Finding a Pi Zero is unquestionably the hardest part in this endeavor — on the software side, everything is ready for you, just flash an SD card with a pre-cooked malicious image and go!

On the surface level, this might seem like a cookie-cutter malicious USB attack. However, there’s a non-technical element to it; USB-C docks are becoming more and more popular, and with the unique level of convenience they provide, the “plug it in” temptation is much higher than with other devices. For instance, in shared workspaces, having a USB-C cable with charging and sometimes even a second monitor is becoming a norm. If you use USB-C day-to-day, the convenience of just plugging a USB-C cable into your laptop becomes too good to pass up on.

This hack doesn’t exactly use any USB-C specific technical features, like Power Delivery (PD) – it’s more about exploiting the convenience factor of USB-C that incentivizes you to plug a USB-C cable in, amplifying an old attack. Now, BadUSB with its keystroke injection is no longer the limit — with a Thunderbolt-capable USB-C dock, you can connect a PCIe device to it internally and even get access to a laptop’s RAM contents. Of course, fearing USB-C cables is not a viable approach, so perhaps it’s time for us to start protecting from BadUSB attacks on the software side.

Haptick: The Strain Gauge Based 6DoF Controller

Six degrees of freedom (6DoF) controllers are used for manipulating an object in a CAD or 3d modeling program and are often called spacemice. You can twist it, push it, and even bop it. Most work with optical encoders, shining an LED through a slit to some form of photodetector on the other side. [Matthew Schubert] wanted to make his own spacemouse, but had some new ideas of how to go about it. His two-part project, dubbed haptic, focuses on measuring the forces, not the displacement.

He decided to try thick-film resistors as strain gauges and revisit load cells and proper strain gauges later. The actual structure quickly converged on the Stewart Platform, formed from three custom PCBs. A base to sit on, a knob for the top, and a middle board designed to take the strain with SMD resistors. A Teensy 3.2 talks to the ADS131M06 ADC and streams 4k samples per second to the host computer via serial. For prototyping, the calculations were done on the PC. Continue reading “Haptick: The Strain Gauge Based 6DoF Controller”

Compact Mouse Jiggler Keeps Boss Off Your Back

The work-from-home revolution enabled many workers to break free from the shackles of the office. Some employers didn’t like the loss of perceived control though, and saddled workers with all kinds of odious spyware to monitor their computer activity. Often, this involves monitoring mouse movement to determine if workers are slacking off or not. Mouse jigglers aim to fool these systems, and the MAUS from [MAKERSUN99] is one you can build yourself.

The MAUS is not a mechanical system that moves a real-life mouse on your desk. Instead, it directly injects emulated mouse movements via USB. It runs on an ATtiny85, which is able to spit out USB HID commands with the help of the V-USB software USB implementation. Along with the microcontroller, MAUS also features a red LED and a WS2812B RGB LED for user feedback. It’s also available on Tindie if your boss has you so busy that you don’t have time to build one.

Mouse jigglers came to prominence as working from home became mainstream. However, they’ve been around for years.

Continue reading “Compact Mouse Jiggler Keeps Boss Off Your Back”

Solar Powered Split Wireless Mechanical Keyboard

When thinking about a perfect keyboard, some of us have a veritable laundry list: split, hot-swapping, wireless, 3d printed, encoders, and a custom layout. The Aloidia keyboard by [Nguyen Vincent] has all that and more.

One of the first things to notice is a row of solar panels on the top, which trickle charge the keyboard. The keyboard uses 65uA in idle and 30uA when in a deep sleep. With the solar panels providing anywhere between 600-1200uAh a day, the battery should last a year and a half under even harsh conditions. The encoders were specially chosen to reduce pull-up power consumption. Given the focus on power and the lack of wires between the halves, you might wonder how the connection to the computer is handled. Does one-half handle the connection and use more power? The answer is that both talk to a dongle based around an nRF52840. This lets the keyboard halves idle most of the time and enables the dongle to handle the expensive communications to the host PC.

Instead of an e-paper screen in the top left, [Nguyen] placed a Sharp memory display. The 3D-printed case is stunning, with no visible screws on the top and tenting feet on the bottom. The two halves snap together very satisfactorily with the power of magnets (the printed palm rests also magnetically attach). Overall it is an incredibly well-thought-out keyboard with all sorts of bells and whistles.

There are project logs with detail to dig into and more videos and photos. We love a good keyboard journey like this one that went for a more ergonomic shape that meant more custom wiring.

Schematics are up on hackaday.io in the files section—video after the break.

Thanks [Shantanu] for the tip!

Continue reading “Solar Powered Split Wireless Mechanical Keyboard”

Illustrated Kristina with an IBM Model M keyboard floating between her hands.

Keebin’ With Kristina: The One Where Shift (Really) Happens

Hooray, the system works! [Sasha K.] wrote to let me know about their Thumbs Up! keyboard, which is the culmination of a long journey down the DIY rabbit hole to end game. (Seriously, it’s kind of a wild ride, and there’s a ton of pictures).

Thumbs Up! comes in both monoblock and full split versions, but both are designed for Kailh chocs. Fans of the Kinesis Advantage will dig the key wells and possibly the thumb cluster, which in this case is raised up a bit from the mainlands. I’m pretty fond of the naked PCB approach to keyboard building, especially when they’re stacked and look as good as these do.

While the full split only comes in RP2040 (not that there’s anything wrong with that), the monoblock split is available in Pro Micro, ATmega Mini, and RP2040 versions. You can find the STL for the tilt stand and other goodies on Thingiverse.

Continue reading “Keebin’ With Kristina: The One Where Shift (Really) Happens”