Smartphone-based Robotic Rover Project Goes Open Source

[Aldric Négrier] wrote in to let us know that his DriveMyPhone project has been open sourced. The project is a part telepresence, part remote-controlled vehicle, part robotic rover concept on which he says “I spent more time […] than I should have.” He has shared not just the CAD files, but every detail including tips on assembly. He admits that maybe a robotic chassis for a smartphone might not seem like a particularly new idea today, but it was “an idea with more potential” back in 2010 when he first started.

The chassis is made to cradle a smartphone. Fire up your favorite videoconferencing software and you have a way to see where you’re going as well as hear (and speak to) your surroundings. Bluetooth communications between the phone and the chassis provides wireless control. That being said, this unit is clearly designed to be able to deal with far more challenging terrain than the average office environment, and has been designed to not only be attractive, but to be as accessible and open to repurposing and modification as possible.

Continue reading “Smartphone-based Robotic Rover Project Goes Open Source”

RetroFab: Machine Designed Control Of All The Things

On the Starship Enterprise, an engineer can simply tell the computer what he’d like it to do, and it will do the design work. Moments later, the replicator pops out the needed part (we assume to atomic precision). The work [Raf Ramakers] is doing seems like the Model T ford of that technology. Funded by Autodesk, and as part of his work as a PhD Researcher of Human Computer Interaction at Hasselt University it is the way of the future.

The technology is really cool. Let’s say we wanted to control a toaster from our phone. The first step is to take a 3D scan of the object. After that the user tells the computer which areas of the toaster are inputs and what kind of input they are. The user does this by painting a color on the area of the rendering, we think this technique is intuitive and has lots of applications.

The computer then looks in its library of pre-engineered modules for ones that will fit the applications. It automagically generates a casing for the modules, and fits it to the scanned surface of the toaster. It is then up to the user to follow the generated assembly instructions.

Once the case and modules are installed, the work is done! The toaster can now be controlled from an app. It’s as easy as that. It’s this kind of technology that will really bring technologies like 3D printing to mass use. It’s one thing to have a machine that can produce most geometries for practically no cost. It’s another thing to have the skills to generate those geometries. Video of it in action after the break.  Continue reading “RetroFab: Machine Designed Control Of All The Things”

Hackaday Prize Entry: A Low-Cost Robot Arm

Robot arms are cool, and to judge from the SCARA arms and old Heathkit robots tucked away in a cupboard of every computer science department in every university in the world, they’re still remarkably educational. You can learn a lot about control systems with a robot arm, or you could build a clone of the old Radio Shack Armatron; either way, you’re doing something very cool. Right now, there aren’t many educational robot arms available, and the ones you can get are tiny. For [Jonathan]’s Hackaday Prize project, he’s building a low-cost robot arm with a one meter reach.

There’s a reason you won’t find many large, low-cost robot arms: the square cube law. An ant can carry many times its own body weight, but if you scaled that ant up to the size of a human, its legs couldn’t support itself. Likewise, a small, handheld robot arm will work perfectly well with hobby servos, but scaling this up requires big heavy stepper motors.

Continue reading “Hackaday Prize Entry: A Low-Cost Robot Arm”

Robot Cheerleader Just Needs A Hand To Learn Basic Tricks

This robot may have the fastest hand we’ve ever seen. It’s only a hand at the moment, but it’s certainly good with it.

The hand comes from a research project out of the University of Washington. The researchers didn’t just want to program the robot to do tricks, they wanted it to learn. Some tasks are just by nature too complex and tedious to program all the details for. Look at all those tendon activators. You want to program that?

The current focus of the robot is twirling a stick. While they’re probably a ways away from a robot cheerleading squad or robot drum major, the task itself is extremely difficult. This can be proven by just how many YouTube videos there are on the art of pencil twirling.

While the video didn’t show the robot dramatically twirling the stick at high speed, it did show the robot rotating it a little bit without dropping it. And this is a behavior that it has learned. For anyone who has ever had a run-in with robotics, or the art of convincing a robot not to discard all the data it collects in order to not run directly into a wall, this is a pretty big achievement. Video after the break.

Continue reading “Robot Cheerleader Just Needs A Hand To Learn Basic Tricks”

Robo Face Speaks

If you are doing a senior design project in engineering school, it takes some guts to make a robotic duplicate of the school’s president. He or she might be flattered, or completely offended. Us? We laughed out loud. Check out the video below. Spoiler: the nose/moustache wiggle at the end kills us every time.

The project uses a variety of parts including a plastic mask, an Erector set, and the obligatory Arduino with an MP3 shield. There are many articulated parts including eyes, nose, mouth, and wiggly moustache. The face uses RC servos, although [gtoombs] says he’d use stepper motors next time for smoother motion.

Continue reading “Robo Face Speaks”

VR Telepresence Tank From Raspberry Pi, Google Cardboard, And Xbox Controller

It’s great to see different kinds of hardware and software tossed into a project together, allowing someone to mix things that don’t normally go together into something new. [Freddy Kilo] did just that with a project he calls his VR Robot Tank. It’s a telepresence device that uses a wireless Xbox controller to drive a tracked platform, which is itself headed by a Raspberry Pi.

The Pi has two cameras on a pan-tilt mount, and those cameras are both aimed and viewed via a Google Cardboard-like setup. A healthy dose of free software glues it together, allowing things like video streaming (with U4VL) and steering via the wireless controller (with xboxdrv). A bit of fiddling was required for some parts – viewing the stereoscopic cameras for example is done by opening and positioning two video windows just right so as to see them through the headset lenses. It doesn’t warp the image to account for the lens distortion in the headset, and the wireless range might be limited, but the end result seems to work well enough.

The tank is driven with the wireless controller while a mobile phone mounted in a headset lets the user see through the cameras; motion sensing in the phone moves those cameras whenever you move your head to look around. Remote Control hobbyists will recognize the project as doing essentially the same job as FPV setups for model aircraft (for example, Drone Racing or even Snow Sleds) but this project uses a completely different hardware and software toolchain. It demonstrates the benefits of having access to open tools to use as virtual “duct tape”, letting people stick different things together to test a concept. It proves almost anything can be made to work if you have a willingness to fiddle!

Continue reading “VR Telepresence Tank From Raspberry Pi, Google Cardboard, And Xbox Controller”

Open Robots With Open Roberta

Kids, and Hackaday editors, love robots! The Open Roberta project (OR) takes advantage of this to teach kids about programming. And while the main focus is building a robot programming language that works for teaching grade-school and high-school kids, it’s also a part of a large open source robotics ecosystem that brings a lot more to the table than you might think. We talked with some folks at Google, one of the projects’ sponsors, about where the project is and where it’s going.

csm_Roberta_9e1215fc57Building a robot can be very simple — assembling pre-configured parts or building something small, quick, and cute — or it can be an endeavour that takes years of sweat and tears. Either way, the skills involved in building the ‘bot aren’t necessarily the same as those it takes to program the firmware that drives it, and then eventually the higher-level software that makes it functional and easy to drive.

OR, as an educational project, makes it very, very easy for kids to start off programming robots, but it’s expandable as the user gets more experienced. And since everything is open source, it’s part of a whole ecosystem that makes it even more valuable. We think it’s worth a look (along with something significantly more complex like ROS) if you’re playing around with robotics.

System Architecture

openRoberta.dotOpen Roberta is the user-facing middleware in a chain of software and firmware bits that make a robot work in a classroom environment. For the students, everything runs inside a browser. OR provides a webserver, robot programming interface and language, and then converts the output of the students’ programs to something that can be used with the robots’ firmware. The robots that are used in classrooms are mostly based on the Lego Mindstorms EV3 platform because it’s easy to put something together in short order. (But if you don’t have an EV3, don’t despair and read on!)

The emphasis is on ease of entry for the students and the teachers supervising the class. Everything runs in a browser, so there’s nothing to install on the client side. The students connect to a server that directs the robots, communicating with the robots’ own operating system, and uploading the students’ programs.

Continue reading “Open Robots With Open Roberta”