Autonomous Off-Road Food Delivery With Pixhawk

It should come as no surprise that the COVID-19 pandemic has sparked renewed interest in robotic deliveries. Amazon saying they would some day land Prime orders in your backyard with a drone sounded pretty fanciful a few years ago, but now that traditional delivery services are under enormous strain and people are looking to avoid as much human contact as possible, it’s starting to make a lot more sense.

Pro Tip: Avoid drifting while towing seafood.

Now to be clear, we don’t think you’ll be seeing this modified RC truck rolling up your driveway with a pizza in tow anytime soon. But the experiments that [Sean] has been doing with it are certainly interesting, and show just how far autonomous rover technology has progressed at the hobbyist level. Whether you need to move some sushi or a sensor package, his build is a great starting point for anyone interested in DIY robotic ground vehicles.

Especially if you want to take things off the beaten path once and awhile. By combining the Pixhawk autopilot system with an off-road RC truck by Traxxas, [Sean] has created a delivery bot that’s not afraid of a little mud. Or even the occasional jump, should the need arise. Just don’t expect your shrimp cocktail and champagne to arrive in one piece after they’ve been given the Dukes of Hazzard treatment.

In the video after the break [Sean] goes over some of the lessons learned on this build, including how he managed to keep the electronics from cooking themselves in the Texas heat. He also goes over the realities of building an autonomous driving system that doesn’t actually have a camera onboard; sure you can plan a route for it in advance, but all bets are off if an unexpected obstacle blocks the path. It’s a pretty serious shortcoming he’s looking to address in the future, as well as upgrading to a far more accurate RTK-GPS receiver.

Continue reading “Autonomous Off-Road Food Delivery With Pixhawk”

OPARP Telepresence Robot

[Erik Knutsson] is stuck inside with a bunch of robot parts, and we know what lies down that path. His Open Personal Assistant Robotic Platform aims to help out around the house with things like filling pet food bowls, but for now, he is taking one step at a time and working out the bugs before adding new features. Wise.

The build started with a narrow base, an underpowered RasPi, and a quiet speaker, but those were upgraded in turn. Right now, it is a personal assistant on wheels. Alexa was the first contender, but Mycroft is in the spotlight because it has more versatility. At first, the mobility was a humble web server with a D-pad, but now it leverages a distance sensor and vision, and can even follow you with a voice command.

The screen up top gives it a personable look, but it is slated to become a display for everything you’d want to see on your robot assistant, like weather, recipes, or a video chat that can walk around with you. [Erik] would like to make something that assists the elderly who might need help with chores and help connect people who are stuck inside like him.

Expressive robots have long since captured our attention and we’re nuts for privacy-centric personal assistants.

Continue reading “OPARP Telepresence Robot”

Robotic Mouse Toy Built For Cats

Cats are nature’s born hunters. Whether its rodents, insects, or lasers, they’ll pounce and attack with ruthless efficiency. Built to challenge a cat, or perhaps merely to tease it, Sourino is a robotic mouse built with common off-the-shelf parts.

A test subject appears unamused.

So named for the combination of Souris (French for “mouse”) and Arduino, the project is driven by an Arduino Nano. Hooked up to three sets of ultrasonic transducers, this gives the robot mouse much improved obstacle avoidance abilities compared to using just a single transducer front-and-centre. The ‘bot can navigate basic mazes or household floors with ease. A pair of geared motors are used for drive, using simple skid-steering to turn corners. It’s all packed in a 3D printed enclosure, which mounts the various components and exposes the ultrasonic sensors. There’s even an IR remote enabling mode selection or full manual control.

While the ‘bot lacks the speed and agility of common house mice, it’s nevertheless a project that teaches plenty of valuable lessons. We’re sure [Electrocat01] picked up plenty of skills in robotic navigation, mechanical design and 3D printing along the way. Creating robot mice is actually a competitive field, as we’ve seen before. Video after the break.

Continue reading “Robotic Mouse Toy Built For Cats”

Tiny Robot Beetle Runs On Alcohol

Batteries have come a long way in the past few centuries, but pale in comparison to hydrocarbon fuels when it comes to energy density. When it comes to packing plenty of juice in a light, compact package, hydrocarbons are the way to go. Recently, researchers have begun to take advantage of this, powering small robots with liquid fuels. Just like Bending Unit 22, aka Bender Bending Rodriguez, this tiny robotic beetle runs on alcohol.

Robeetle can carry up to 2.6 times its own weight, using Nitinol muscle wires to move its legs.

Affectionately named Robeetle, the tiny ‘bot weighs just 88 milligrams, comparable in mass its insectoid contemporaries. It stores methanol in a polyimide film tank, operating for up to 2 hours on a single fill.  As shown in the video, a solely mechanical control system is used to actuate the robot’s legs. In the neutral state, vents in the fuel tank are open, releasing methanol vapor. This passes over nitinol muscle wires coated in a special catalyst which causes the combustion of the methanol, heating the wires. The wires then contract, moving the legs, and closing the vents. When the wire cools, the wires relax, opening the vents and beginning the cycle anew.

While the ‘bot is solely capable of walking in a single direction, it nevertheless shows the possibilities enabled by powering small devices from energy-dense fuels. Waiting for improved battery technologies to develop is such a bore, after all. We look forward to swarms of such ‘bots exploring disaster areas or performing environmental sampling in years to come. The scientific paper outlines the research outcomes in detail.

We love tiny robots at Hackaday; we’ve featured a few in the past, too. Video after the break.

Continue reading “Tiny Robot Beetle Runs On Alcohol”

Assistive Gloves Come In Pairs

We have to hand it to this team, their entry for the 2020 Hackaday Prize is a classic pincer maneuver. A team from [The University of Auckland] in New Zealand and [New Dexterity] is designing a couple of gloves for both rehabilitation and human augmentation. One style is a human-powered prosthetic for someone who has lost mobility in their hand. The other form uses soft robotics and Bluetooth control to move the thumb, fingers, and an extra thumb (!).

The human-powered exoskeleton places the user’s hand inside a cabled glove. When they are in place, they arch their shoulders and tighten an artificial tendon across their back, which pulls their hand close. To pull the fingers evenly, there is a differential box which ensures pressure goes where it is needed, naturally. Once they’ve gripped firmly, the cables stay locked, and they can relax their shoulders. Another big stretch and the cords relax.

In the soft-robotic model, a glove is covered in inflatable bladders. One set spreads the fingers, a vital physical therapy movement. Another bladder acts as a second thumb for keeping objects centered in the palm. A cable system draws the fingers closed like the previous glove, but to lock them they evacuate air from the bladders, so jamming layers retain their shape, like food in a vacuum bag.

We are excited to see what other handy inventions appear in this year’s Hackaday Prize, like the thumbMouse, or how about more assistive tech that uses hoverboards to help move people?

Continue reading “Assistive Gloves Come In Pairs”

Student Rover Explores The Backyard In Tribute

Three students were a little sad when NASA’s Opportunity rover went silent after 15 years on the Martian surface. So they decided to build their own rover inspired by Opportunity to roam their backyards using an off-the-shelf robot chassis, a Raspberry Pi, and the usual list of parts like motors, H-bridges, and batteries.

Like the real rover, the vehicle uses a rocker-bogie system, although it is a little less complex than the version NASA sent blasting off towards the Red Planet. The plucky vehicle comes complete with miniature solar panels to recharge its onboard battery, courtesy of some dollar-store garden lights. A pair of videos after the break show how the rover is controlled, as well as the view sent back from its onboard camera.

The rover ran a simulated Mars mission as part of a school project where it had to find an object and transmit an image of it back to home base, and by the looks of it, is was a rousing success. But the young explorers aren’t resting on their laurels, and are already working on a second version of their exploration vehicle that can operate in inclement weather and includes some new tools such as a robotic arm and infrared illumination for low-light imaging.

We’ve seen plenty of Mars rover clones in the past, but there’s always room for more. Of course, if you’re looking for something a bit easier to start with, you can always go the LEGO route.

Continue reading “Student Rover Explores The Backyard In Tribute”

Open Exosuit Project Helps Physically Challenged Put One Foot In Front Of Another

Humans make walking look simple, but of course that’s an illusion easily shattered by even small injuries. Losing the ability to walk has an enormous impact on every part of your day, so rehabilitative advances are nothing short of life-changing. The Open Exosuit for Differently Abled project is working feverishly on their Hackaday Prize entry to provide a few different layers of help in getting people back on their feet.

We’ve seen a number of exosuit projects in the past, and all of them struggle in a few common places. It’s difficult to incorporate intuitive user control into these builds, and quite important that they stay out of the way of the user’s own balance. This one approaches those issues with the use of a walker that both provides a means of steadying one’s self, and facilitates sending commands to the exosuit. Using the OLED screen and buttons incorporated on the walker, the user can select and control the walking, sitting, and standing modes.

The exoskeleton is meant to provide assistance to people with weakness or lack of control. They still walk and balance for themselves, but the hope is that these devices will be an aid at times when human caregivers are not available and the alternative would be unsteady mobility or complete loss of mobility. Working with the assistive device has the benefit of continuing to make progress in strengthening on the march to recovery.

The team is hard at work on the design, and with less than two weeks left before the entry deadline of the 2020 Hackaday Prize, we’re excited to see where the final push will bring this project!

Continue reading “Open Exosuit Project Helps Physically Challenged Put One Foot In Front Of Another”