Get Back Out There, Robotically

When interacting with reality at a distance is the best course of action, we turn to robots. Whether that’s exploring the surface of Venus, the depths of the ocean, or (for the time being) society at large, it’s often better to put a robot out there than an actual human being. We can’t all send robots to other planets, but we can easily get them in various other places with telepresence robots.

This tiny telepresence robot comes to us from [Ross] at [Crafty Robot] who is using their small Smartibot platform as a basis for this tiny robot. The smartibot drives an easily-created cardboard platform, complete with wheels, and trucks around a smartphone of some sort which handles the video and network capabilities. The robot can be viewed and controlled from any other computer using a suite of web applications that can be found on the project page.

The Smartibot platform is an inexpensive platform that we’ve seen do other things like drive an airship, and the creators are hoping that as many people as possible can get some use out of this quick-and-easy telepresence robot if they really need something like this right now. The kit seems like it would be useful for a lot of other fun projects as well.

Continue reading “Get Back Out There, Robotically”

The Drone That Flies In Any Orientation

Modern radio-controlled multi-rotor drone can be incredibly agile, but can only make orientation changes around the yaw axis while remaining in approximately the same position. Researchers at ETH Zurich have again built and tested multirotor with controllable motion six degrees of freedom, this time dramatically improving efficiency.

We covered a similar design from ETH Zurich previously which was hexacopter with arms with limited rotation. This new design is also a hexacopter, but with 2 coaxial motors on each rotating arm. Each arm has an increased range of rotation over the previous design, beyond 360 degrees. With the range of rotation and the very complex control system, the drone can efficiently fly in any orientation, while still being able to apply effective torque or linear force in any direction. This opens up a lot of possibilities for tasks that drones can perform, like close-up industrial inspection, using tools or pulling cables while keeping the rotors clear.

The arms do have a limited amount of rotation before winding the motor cable tight, but the control system keeps track of this and can unwind during or after movement. See the video after the break to see it in action. The complete scientific paper is not light reading, but definitely interesting. We’re looking forward to seeing if and when these type designs get used in real-world applications.

There are without a doubt a lot of drones in our future, and probably the most successful project to date is the Zipline fixed-wing drones in Rwanda and Ghana, which have made over 35000 deliveries of emergency medical supplies since 2016.

Thanks [Qes] for the tip!

Continue reading “The Drone That Flies In Any Orientation”

Robot Arm Sucks In A Good Way

Building a robot arm is fun, but no longer the challenge it once was. You can find lots of plans and kits, and driving the motors is a solved problem. However, there is always one decision you have to make that can be a challenge: what effector to put on the end of it. If you are [MertArduino] the answer is to put suction at the end. If you need to grab the right things, this could be just the ticket for reliably lifting and letting go. You can see a video of the arm in action, below.

The arm itself is steel with four servo motors and comes in a kit. The video shows the arm making a sandwich under manual control. We suspect he might have put it under Arduino control but there’s no sudo for making sandwiches.

Continue reading “Robot Arm Sucks In A Good Way”

Clever Suction For Robot Arm Automates Face Shield Production

We’re certainly familiar with vacuum grabbers used in manufacturing to pick items up, but this is a bit different. [James Wigglesworth] sent in some renders and demo video (embedded after the break) of the Dexter robot arm and a laser cutter automatically producing face shields.

It’s a nice little bit of automation, where you can see a roll of plastic on the right side of the Glowforge laser cutter feeding into the machine. Once the laser does its thing, the the robot arm reaches in and grabs the newly cut face shield and stacks it in a box neatly for future assembly. There are a lot of interesting parts here, but the fact that the vacuum grabber is doing it’s job without a vacuum air supply is the one we have our eye on.

The vacuum comes from a corrugated sleeve that makes up the suction cup on the end of the robot arm. A rubber band holds a hinged piece over a valve on that sleeve that can be opened or closed by a servo motor. When the cuff is compressed against the face shield, the servo closes the valve, using the tape as a gasket, and the corrugated nature of the cuff creates a vacuum due to the weight of the item it is lifting. This means you don’t need a vacuum source plumbed into the robot, just a wire to power the servo.

The robot arm is of course the design that won the 2018 Hackaday Prize. I comes as no surprise to see the Haddington Dynamics crew setting up a manufacturing line like this one. As we discovered a few weeks ago, 3D printers, laser cutters, and robot arms are part of their microfactory setup and well suited to making PPE to help reduce the shortage during the COVID-19 outbreak.

Continue reading “Clever Suction For Robot Arm Automates Face Shield Production”

Industrial Robot Given New Life And Controller

We all think we could use a third arm from time to time, but when we actually play this thought experiment out in our heads we’ll eventually come to the same hurdle [caltadaniel] found, which is a lack of a controller. His third arm isn’t just an idea, though. It’s a Yaskawa industrial robot that he was able to source for pretty cheap, but it was missing a few parts that he’s been slowly replacing.

The robot arm came without a controller or software, but also without any schematics of any kind, so the first step was reverse engineering the wiring diagram to get an idea of what was going on inside the arm. From there some drivers were built for the servos, but the key to all of it is the homemade controller. The inverse kinematics math was done in Python and runs on an industrial PC. Once it was finally all put together [caltadaniel] had a functioning robotic arm for any task he could think of.

Interestingly enough, while he shows the robot brushing his teeth for him, he also set it up to flip the switch of a useless machine that exists only to turn itself off. There’s something surreal about a massive industrial-sized robotic arm being used to turn on a $20 device which will switch itself back off instantly, but the absurdity is worth a watch.

Continue reading “Industrial Robot Given New Life And Controller”

Autonomous 3D Rover With Tank Tracks Rules The Fields. Almost

Scope creep is a real pain in the real world, but for projects of passion it can have some interesting consequences. [rctestflight] was playing around with 3D printed rover gearboxes, which morphed into a 3D printed tank build.

[rctestflight]’s previous autonomous rover project had problems with the cheap geared motors, and he started experimenting with his own gearbox designs to use with lower RPM / Kv brushless drone motors. The tank came about because he wanted a simple vehicle to test his design. “Simple” went out the window pretty quickly and the final product was completely 3D printed except for the fasteners, axles, bearings, and electronics.

The tracks and gears are noisy, but it works quite well. On outdoor tests [rctestflight] did find that the tracks were prone to hooking on vines and branches, which in one case caused it to throw a track after the aluminium shaft bent. An Ardurover navigation system was added and with a 32 Ah battery was able to run autonomously for an entire day and there was surprisingly little wear on 3D printed gearbox and tracks afterward. All the STL files are up on Thingiverse, but [rctestflight] recommends waiting for an upcoming update because he discovered flaws in the design after filming the video after the break.

For a slightly more complex and expensive rover, check out our coverage of Perseverance, NASA’s MARS 2020 Rover. Continue reading “Autonomous 3D Rover With Tank Tracks Rules The Fields. Almost”

Teaching Robots Workplace Etiquette

Most often, humans and robots do not have to work directly together, instead working on different parts in a production pipeline or with the robot performing tasks instead of a human. In such cases any human-robot interaction (HRI) will be superficial. Yet what if humans and robots have to work alongside each other? This is a question which a group of students at MIT’s Computer Science and Artificial Intelligence Lab (CSAIL) have recently studied some answers to.

In their paper on human-robot collaborative tasks (PDF), they cover the three possible models one can use for this kind of interaction: there can be no communication (‘silent’), the communication can be pre-programmed (state machine), or in this case a Markov model-based system. This framework which they demonstrate is called CommPlan and it uses observation data from human subjects to construct a Markov model that can integrate sensor data in order to decide on its next action.

In the experiment they performed (the preparation of a meal; see the embedded video after the break), human subjects had to work alongside a robot. Between the three different approaches, the CommPlan one was the fastest, using voice interaction only when it deemed it to be necessary. The experiment’s subjects expressed hereby a preference for bidirectional communication, much as would occur between human workers.

Continue reading “Teaching Robots Workplace Etiquette”