Lead Former Makes LED Cubes A Little Easier To Build

There’s no doubting the allure of a nicely crafted LED cube; likewise, there’s no doubting that they can be a tremendous pain to build. After all, the amount of work scales as the cube of the number of LEDs you want each side to have, and let’s face it – with LED cubes, the bigger, the better. What to do about all that tedious lead forming?

[TylerTimoJ]’s solution is a custom-designed lead-forming tool, and we have to say we’re mighty impressed by it. His LED cubes use discrete RGB LEDs, the kind with four leads, each suspended in space by soldering them to wires. For the neat appearance needed to make such a circuit sculpture work, the leads must be trimmed and bent at just the right angles, a tedious job indeed when done by hand. His tool has servo-controlled jaws that grip the leads, with solenoid-actuated lead formers coming in from below to bend each lead just the right amount. The lead former, along with its companion trimmer, obviously went through a lot of iterations before [TylerTimoJ] got everything right, but we’d say being able to process thousands of LEDs without all the tedium is probably worth the effort.

We’re looking forward to the huge LED cubes this tool will enable. Perhaps this CNC wire bender and an automated wire cutter would come in handy for the supporting wires?

Continue reading “Lead Former Makes LED Cubes A Little Easier To Build”

Hacked Hoverboards Become Potent RC Tank

Hoverboards were the darling, or perhaps the scourge, of the last few years, Banned by vigilant airlines, they’re a great way to break an ankle or set your house on fire. However, they’re also a treasure trove of valuable parts for hacking, as [Aaron] ably demonstrates with his RC tank build.

[Aaron’s] build utilizes not only the hoverboard’s torquey hub motors but also the original control hardware, too. This is a cinch to repurpose, thanks to the custom firmware for the original controller developed by [Lucy Fauth], whose work we have featured before.

The hacked parts are crammed into a chassis built with aluminum extrusion, and the final result is a nimble and robust tank with one motor per wheel. This enables some exciting driving dynamics. Additionally, with all the torque available, [Aaron] is even able to ride the tank like an electric skateboard.

It’s a fun build that shows off the raw power available from the hoverboard hardware. We fully expect to see these parts remain popular in the hacking scene in the coming years. Video after the break.

Continue reading “Hacked Hoverboards Become Potent RC Tank”

UbaBOT Mixes Up 50 Cocktails To Quench CCCamp Thirst

[Steffen Pfiffner’s] tent during the Chaos Communication Camp is full of happiness delivered by something greater than alcohol alone. He’s brought a robot bartender that serves up a show while mixing up one of about 50 cocktail recipes.

The project is the work of five friends from Lake Constance (Bodensee) in southern Germany, near the borders with Switzerland and Austria. It started, as many projects do, with some late night drinking. The five were toiling to mix beverages more complex than your most common fare, and decided to turn their labors instead to robot making.

Since 2012, the project has gone through five revisions, the most recent of which the team calls Uba BOT. Delightfully, the cup tray which moves left and right on the front of the machine is connected using a strain gauge. This provides a way for the robot to sense the presence of a cup to avoid dispensing ingredients all over the bar itself. It also provides a feedback loop that verifies the amount of liquids and volume of ice added to the cup. Once everything’s in the cup, a rotary milk frother lowers itself into position to stir things up a bit.

A Raspberry Pi is in control of eighteen pumps that dispense both liquor and mixers. The team is still trying to work out a way to reliably dispense carbonated mixers, which so far have been a challenge due to over-excited foam. The software was originally based on Bartendro, but has since taken on a life of its own as these things often do. The first time you want a drink, you register an RFID tag and record your height, weight, and age which keeps track of your estimated blood alcohol content based on time and your number of visits to the robot. The firmware also tracks the state of each ingredient to alert a meat-based bar attendant of when a bottle needs replacing.

Join us after the break to see an explanation of what’s under the hood and to watch Uba BOT mix up a Mai Tai.

Continue reading “UbaBOT Mixes Up 50 Cocktails To Quench CCCamp Thirst”

Behold The Crimson Axlef*cker (Do Not Insert Finger)

Are your aluminum extrusions too straight? The Crimson Axlef*cker can help you out. It’s a remarkable 3D printed, 4-stage, 125:1 reduction gearbox driven by a brushless motor. Designer [jlittle988] decided to test an early prototype to destruction and while he was expecting something to break, he didn’t expect it to twist the 2020 aluminum extrusion shaft before it did. We suppose the name kind of stuck after that.

Internals of the first prototype, shaft of BLDC motor just visible at top. Twisted 2020 extrusion output shaft at bottom right.

[jlittle988] has been documenting the build progress on reddit, and recently posted a fascinating video (embedded below) of the revised gearbox twisting the output shaft even further. He’s a bit coy about the big picture, saying only that the unit is part of a larger project. In fact, despite the showy tests, his goal is not to simply obtain maximum torque. We can only speculate on what his bigger project is, but in the meantime, seeing the gearbox results is some good clean fun. He first announced the gearbox test results here, and swiftly followed it up with some revisions, then the aforementioned video. There’s also an image gallery of the internals, so check that out.

The Crimson Axlef*cker is driven by an ODrive brushless dual-shaft motor and an ODrive controller as well; that’s the same ODrive whose open source motor controller design impressed us so much in the past.

Between projects like this one and other gearboxes like this cycloidal drive, it’s clear that custom gearbox design is yet another door that 3D printing has thrown wide open, allowing hobbyists to push developments that wouldn’t have been feasible even just a few years earlier.

Continue reading “Behold The Crimson Axlef*cker (Do Not Insert Finger)”

Tiny Two-Legged PCB Robot

YouTuber and electronics engineer [Carl Bugeja] has a knack for finding creative uses for flexible PCBs. For the past year, he has been experimenting with PCB motors, using them on drones, robot fish, and most recently swarm robots. This is his final video in the vibro-bot series, and he’s got his best results to date. (Embedded below.)

He started off with flexible PCB actuators as robotic legs and magnets fitted into 3D-printed shells. The flexible PCB actuators work as inefficient electromagnets, efficient enough to react to a magnet when a current runs through, but not so efficient that they don’t release immediately.

The most recent design uses a rigid 0.6 mm FR4 PCB that acts as the frame to prevent the middle of the robot from bending. The “brain” of the robot is located at its center, which is connected to the flexible PCB actuators. Since the biggest constraint on his past robots was weight, he removed two of the legs to reduce the weight by 20%, resulting in straighter walks. He also added a Bluetooth module to wirelessly control the robot and replaced his old LiPo with a new, lighter battery (28 mAh, 15 C, 420 mA).

His latest video now shows that the robot is able to move forwards, backwards, and side to side. That’s a huge improvement over his previous attempts, which mostly resulted in the robot vibrating in place or flopping around his workbench. It’s not going to fetch you a beer, but it’s really cool.

Continue reading “Tiny Two-Legged PCB Robot”

ArduRover Boat Uses Tub To Float

There’s nothing quite like the sight of a plastic box merrily sailing its way around a lake to symbolise how easy it is to get started in autonomous robotics. This isn’t a project we’re writing about because of technical excellence, but purely because watching an autonomous plastic box navigate a lake by itself is surprisingly compelling viewing. The reason that [rctestflight] built the vessel was to test out the capabilities of ArduRover. ArduRover is, of course, a flavour of the extremely popular open source ArduPilot, and in this case is running on a Pixhawk.

The hardware itself is deliberately as simple as possible: two small motors with RC car ESCs, a GPS, some power management and a telemetry module are all it takes. The telemetry module allows the course/mission to be updated on the fly, as well as sending diagnostic data back home. Initially, this setup performed poorly; low GPS accuracy combined with a high frequency control loop piloting a device with little inertia lead to a very erratic path. But after applying some filtering to the GPS this improved significantly.

Despite the simplicity of the setup, it wasn’t immune to flaws. Seaweed in the prop was a cause of some stressful viewing, not to mention the lack of power required to sail against the wind. After these problems caused the boat to drift off course past a nearby pontoon, public sightings ranged from an illegal police drone to a dog with lights on its head.

If you want to use your autonomous boat for other purposes than scaring the public, we’ve written about vessels that have been used to map the depth of the sea bed, track aircraft, and even cross the Atlantic.

Continue reading “ArduRover Boat Uses Tub To Float”

[Jessica] Is Soft On Robot Grippers

It is an old movie trope: a robot grips something and accidentally crushes it with its super robot strength. A little feedback goes a long way, of course, but futuristic robots may also want to employ soft grippers. [Jessica] shows how to build soft grippers made of several cast fingers. The fingers are cast from Ecoflex 00-50, and use air pressure.

A 3D-printed mold is used to cast the Ecoflex fingers, which are only workable for 18 minutes after mixing, so it’s necessary to work fast and have everything ready before you start.

Continue reading “[Jessica] Is Soft On Robot Grippers”