The internals of a home built 10 MHz frequency reference.

Low Cost Lab Frequency Reference

[Mark] wanted an accurate frequency reference for his electronics lab. He specified some requirements for the project, including portability, ability to work inside a building, and low cost. That ruled out GPS, cesium standard clocks, rubidium standard clocks, and left him looking for a low cost Oven Controlled Crystal Oscillator (OCXO).

The Low Cost 10 MHz Frequency Reference is based around a Morion OCXO. These Russian oscillators are available from eBay second hand at about $40 a pop. With a stability well within the requirements, [Mark] order a few.

The next step was to stick all the components in a box. The two OCXOs in the box need about 3 amps to heat up, which is provided by a 12 V PSU. For portability, a sealed lead acid battery was added. The front panel shows the supply voltages, switches between mains and battery supplies, and provides connectivity to the OCXOs.

Since OCXOs work by heating a crystal to a specific temperature, they can use quite a bit of power in the heating element. To increase battery life, a neoprene foam insulator was wrapped around the OCXOs.

For less than $100, this portable tool will aid in calibrating equipment or creating very accurate clocks.

DIY Lantern

Lantern Made In Preparation Of Zombie Apocalypse

[BenN] was at his local hackerspace one day when a friend stopped by and offered him a used 5AH lead acid battery. As any good tinkerer would, he jumped on the opportunity and immediately started looking around for a project to use the battery in. One of [BenN’s] recent other projects involved 12volt landscaping lights, the same voltage as the battery he was just given. At this point it was clear that he had a good start to making a lantern. This lantern project also supports [BenN’s] obsession with hobby of preparing for the zombie apocalypse.

A lantern needs an enclosure. Over on the hackerspace’s spare-parts rack was an old ATX power supply. All of the internal electrical components were removed to make room for the battery which fit inside nicely. The landscaping light just happened to be slightly larger than the power supply’s fan cut outs. Once the grill was removed from the metal power supply enclosure, the lamp fit in nicely and was secured using silicone glue which can tolerate any temperature the bulb can produce.

The feature that separates a lantern from a flashlight is the top-mounted carrying handle and this lantern will receive one made from the wiring removed from the ATX power supply. The electrical wiring is fairly straight forward. The battery is connected to the landscaping light by way of the original ATX on/off switch. The two terminals of the battery were also wired to the power supply’s AC input connector. This allows [BenN] to connect a DC battery charger to two of the three pins in order to charge the battery. Although this is a creative way to re-use the AC connector, it leaves quite a bit of potential to accidently plug in a 120v AC cord!

 

The CC3200 dev board with Energia

Energia On The CC3200

If you’re looking to connect things to the internet, with the goal of building some sort of “Internet of Things,” the new CC3200 chip from TI is an interesting option. Now you can get started quickly with the Energia development environment for the CC3200.

We discussed the CC3200 previously on Hackaday. The chip gives you an ARM Cortex M4 processor with a built-in WiFi stack and radio. It supports things like web servers and SSL out of the box.

Energia is an Arduino-like development environment for TI chips. It makes writing firmware for these devices easier, since a lot of the work is already done. The collection of libraries aids in getting prototypes running quickly. You can even debug Energia sketches using TI’s fully featured IDE.

With this new release of Energia, the existing Energia WiFi library supports the built-in WiFi radio on the CC3200. This should make prototyping of WiFi devices easier, and cheaper since the CC3200 Launchpad retails for $30.

Volumetric Circuits

Building a circuit Manhattan style with small bits of copper and solder is a skill all its own, and building a prototype dead bug style is close to a black art. [Anderson] is taking it to the next level with his volumetric circuits. Not only is he building a free-form circuit that’s also a one-bit ALU, he’s also designing software to make these sort of circuits easy to design and build.

[Anderson] is calling his 3D circuit design software Pyrite, and it does exactly what it says on the tin: creates three-dimensional, grid-aligned physical circuits. Automating the construction of a circuit  is not a trivial task, and soldering all these components together even more so.

With the first prototype of his software, [Anderson] entered the schematic of a simple one bit ALU. The resulting layout was then carefully pieced together with solder and hot glue. It didn’t work, but that’s only because the schematic was wrong. Designing the software is still an incredible accomplishment, and now that [Anderson] has a rudimentary system of automatically designing free form and dead bug circuits, there are a lot of interesting possibilities. Ever wonder if the point to point wiring found in old radios was the most efficient layout? [Anderson] could probably tell you.

You can check out a few videos of [Anderson]’s work below.

Continue reading “Volumetric Circuits”

DIY Powder Coating Oven Gets Things Cooking

[Bob] needed an oven for powder coating metal parts. Commercial ovens can cost thousands of dollars, which [Bob] didn’t have. He did have an rusty old file cabinet though.  And thus, a plan was born. The file cabinet’s steel shell would make a perfect oven body. He just had to remove all the drawers, sliders, and anything combustible. A few minutes with an angle grinder made quick work of the sheet metal. The drawer fronts we re-attached with hinges, allowing the newly fashioned door to swing out-of-the-way while parts are loaded into the oven.

The oven’s heating elements are two converted electric space heaters. The heating elements can be individually switched off to vary power to the oven. When all the elements are running, the oven pulls around 2000 watts, though full power is only used for pre-heating.

[Bob] used a lot of pop rivets in while building this oven, and plenty of them went into attaching sheet metal guards to protect the outside of the heating units. To complete the electrical equipment, a small fan was placed on top of the oven to circulate the air inside.

The most important part of the build was insulation. The entire inside of the oven was coated with aluminum foil and sealed with heat proof aluminum tape. On top of that went two layers of fiberglass matting. Metal strips kept the fiberglass in place, and the stays were held down with rivets. One last layer of aluminum foil was laid down on top of the fiberglass. Curing powder coating produces some nasty gasses, so [Bob] sealed the gaps of the oven with rolled fiberglass matting covered by aluminum foil and tape.

[Bob] was a bit worried about the outside of the oven getting hot enough to start a fire. There were no such problems though. The fiberglass matting makes for an extremely good insulator. So good that the oven goes from room temperature to 400 °F in just 5 minutes. After an hour of operation, the oven skin is just warm to the touch.

If you need to find [Bob], he’ll be out in his workshop – cooking up some fresh powder coated parts.

 

Controlling A Hot Plate’s Temperature For The Lab

When you need precise heating — like for the acetone polishing shown above — the control hardware is everything. Buying a commercial, programmable, controller unit can cost a pretty penny. Instead of purchasing one, try creating one from scratch like [BrittLiv] did.

[BrittLiv] is a Chemical and Biological Engineer who wanted something that performs well enough to be relied upon as a lab tool. Her design utilizes a plain, old hot plate and with some temperature feedback to run custom temperature ramps from programs stored on an SD card.

The system she developed was dealing directly with temperatures up to 338°F. The heating element is driven from mains, using an SSR for control but there is also a mechanical switch in there if you need to manually kill the element for some reason. An ATmega328 monitors the heating process via an MAX6675 thermocouple interface board. This control circuitry is powered from a transformer and bridge rectifier inside the case (but populated on a different circuit board).

She didn’t stop after getting the circuit working. The project includes a nice case and user interface that will have visitors to your lab oohing and aahing.

[Ben Krasnow] Hacks A Scanning Electron Microscope

[Ben Krasnow] is quite possibly the only hacker with a Scanning Electron Microscope (SEM) collection. He’s acquired a JEOL JSM-T200, which was hot stuff back in the early 1980’s. [Ben] got a great deal, too.  He only had to pay shipping from Sweden to his garage. The SEM was actually dropped during shipment, but thankfully the only damage was a loose CRT neck plug. The JSM-T200 joins [Ben’s] homemade SEM, his DIY CT scanner, the perfect cookie machine, and a host of other projects in his lab.

The JSM-T200 is old tech; the primary way to store an image from this machine is through a screen-mounted Polaroid camera, much like an old oscilloscope. However, it still has a lot in common with current SEMs. In live video modes, an SEM can only collect one or two reflected electrons off a given section of a target. This creates a low contrast ghostly image we’ve come to associate with SEMs.

Attempting to fire more electrons at the target will de-focus the beam due to the electrons repelling each other. Trying to fire the electrons from higher voltages will just embed them into the target. Even SEMs with newer technology have to contend with these issues. Luckily, there is a way around them.

When “writing to photo”, the microscope switches to a slow scan mode, where the image is scanned over a period of a minute. This slower scan gives the microscope extra time to fire and collect more electrons – leading to a much better image. Using this mode, [Ben] discovered his microscope was capable of producing high-resolution digital images. It just needed a digital acquisition subsystem grafted on.

Click past the break to see how [Ben] modernized his microscope!

Continue reading “[Ben Krasnow] Hacks A Scanning Electron Microscope”