Automatic Arduino Bicycle Shifter

One of the keys to efficient cycling performance is a consistent pedalling cadence. To achieve this the cyclist must always be in the correct gear, which can be tricky when your legs are burning and you’re sucking air. To aid in this task, [Jan Oelbrandt] created Shift4Me, an open-source Arduino powered electronic shifter.

The system consists of a hall effect sensor at the pedals to measure cadence, an Arduino controller, and a servo mechanism to replace the manual shifter. Everything is mounted in a small enclosure on the frame. The only way to get one is to build your own, so a forum is available for Shift4Me builders, where the BOM, instructions, code and other documentation is available for download. Most bikes should be easy to convert, and [Jan] invites builders to post their modifications and improvements.

Since the only input is the cadence sensor, we wonder if the system will interfere more than help when the rider has to break cadence. It does however include allowance to hold on the current gear, or reset to a starting gear by pushing a button. One major downside is that you will be stuck in a single gear if the battery dies since the manual shifter is completely removed.

As one of the oldest continuously used forms of mechanical transport, there is no shortage of bicycle-related hacks. Some of the more recent ones we’ve seen on Hackaday include e-bike with a washing machine motor, and a beautifully engineered steam-powered bicycle.

World’s Only Flying Twin Mustang Goes On Sale

Given the incredible success of the P-51 Mustang during the Second World War, it’s perhaps no surprise that the United States entertained the idea of combining two of the iconic fighters on the same wing to create a long-range fighter that could escort bombers into Japan. But the war ended before the F-82 “Twin Mustang” became operational, and the advent of jet fighters ultimately made the idea obsolete. Just five examples of this unique piece of history are known to exist, and the only one in airworthy condition can now be yours.

Assuming you’ve got $12 million laying around, anyway. Even for a flyable WWII fighter, that’s a record setting price tag. But on the other hand, you’d certainly be getting your money’s worth. It took over a decade for legendary restoration expert [Tom Reilly] and his team to piece the plane, which is actually a prototype XP-82 variant, together from junkyard finds. Even then, many of the parts necessary to get this one-of-a-kind aircraft back in the sky simply no longer existed. The team had to turn to modern techniques like CNC machining and additive manufacturing to produce the necessary components, in some cases literally mirroring the design in software so it could be produced in left and right hand versions.

Recovering half of the Twin Mustang in 2008.

We first covered this incredible restoration project back in 2018, before the reborn XP-82 had actually taken its first flight. Since then the plane has gone on to delight crowds with the sound of two counter-rotating Merlin V-12 engines and win several awards at the Oshkosh airshow. The listing for the aircraft indicates it only has 25 hours on the clock, but given its rarity, we can’t blame [Tom] and his crew for keeping the joyrides to a minimum.

As important as it is to make sure these incredible pieces of engineering aren’t lost to history, the recent crash of the B-17G Nine-O-Nine was a heartbreaking reminder that there’s an inherent element of risk to flying these 70+ year old aircraft. A world-class restoration and newly manufactured parts doesn’t remove the possibility of human error or freak weather. While we’d love to see and hear this beauty taxiing around our local airport, it’s a warbird that should probably stay safely in the roost. Hopefully the $12 million price tag will insure whoever takes ownership of the world’s only flying F-82 treats it with the respect it’s due.

Staged Train Wrecks: An Idea That Ran Out Of Steam

Before there were demolition derbies, there were train totalings. That’s right, somebody had the idea to take a couple of worn-out train engines that were ready for the scrap heap, point them at each other, and drive them full steam ahead. And their boss said capital idea, let’s do it. This was the late 1890s.

Maybe it wasn’t the safest way to spend an evening, but a staged train wreck was surely an awesome spectacle to behold. Imagine being one of the brave engineers who had no choice but to get the train going as fast as possible and then jump out at the last second. A demolition derby seems like child’s play by comparison.

The largest and most widely-publicized wreck was put on by a man named William George Crush who was trying to find new ways to promote the Missouri-Kansas-Texas passenger railway. Once he got the okay, Crush found a large field surrounded by three hills that made for excellent viewing. He stood up a temporary town complete with a circus tent restaurant, a wooden jail cell, and 200 rent-a-constables.

On September 15th, 1896, forty thousand people gathered to watch two trains collide along a section of purpose-built track. They hit each other going 50 mph (80 km/h) and both engines exploded, sending hot iron projectiles every which way. Several people were injured, a few died, and a hired photographer lost an eye to shrapnel. Train totalings nevertheless continued until the Great Depression of the 1930s, when the practice was discarded as wasteful.

Thanks for the tip, [Martin]!

Bike Computer Powers On Long After Your Legs Give Out

A typical bicycle computer from the store rack will show your speed, trip distance, odometer, and maybe the time. We can derive all this data from a magnet sensor and a clock, but we live in a world with all kinds of sensors at our disposal. [Matias N.] has the drive to put some of them into a tidy yet competent bike computer that has a compass, temperature, and barometric pressure.

The brains are an STM32L476 low-power controller, and there is a Sharp Memory LCD display as it is a nice compromise between fast refresh rate and low power. E-paper would be a nice choice for outdoor readability (and obviously low power as well) but nothing worse than a laggy speedometer or compass.

In a show of self-restraint, he didn’t try to replace his mobile phone, so there is no GPS, WiFi, or streaming music. Unlike his trusty phone, you measure the battery life in weeks, plural. He implemented EEPROM memory for persistent data through power cycles, and the water-resistant board includes a battery charging circuit for easy topping off between rides.

When you toss the power of a mobile phone at a bike computer, someone will unveil the Android or you can measure a different kind of power from your pedals.

Continue reading “Bike Computer Powers On Long After Your Legs Give Out”

The Mostly Forgotten Story Of Atmospheric Railway

It doesn’t matter whether you know it as a railway, a railroad, a chemin de fer, or a 铁路, it’s a fair certainty that the trains near where you live are most likely to be powered either by diesel or electric locomotives. Over the years from the first horse-drawn tramways to the present day there haven’t been many other ways to power a train, and since steam locomotives are largely the preserve of museums in the 21st century, those two remain as the only two games in town.

But step back to the dawn of the railway age, and it was an entirely different matter. Think of those early-19th-century railway engineer-barons as the Elon Musks and Jeff Bezos’ of their day, and instead of space and hyperloop startups their playground was rail transport. Just as some wild and crazy ideas are spoken about in the world of tech startups today, so it was with the early railways. One of the best-known of these even made it to some real railways, I’m speaking of course about the atmospheric railway.

These trains were propelled not by a locomotive, but by air pressure pushing against a piston in a partially evacuated tube between the tracks.

Continue reading “The Mostly Forgotten Story Of Atmospheric Railway”

Our Trucks Won’t Need No Batteries! Electric Trucks Look To Overhead Wires For Power

As the world grapples with the spectre of the so-called “hockey stick” graph of climate change, there have been a variety of solutions proposed to the problem of carbon emissions from sectors such as transport which have become inseparable from the maintenance of 21st century life. Sometimes these are blue-sky ideas that may just be a little bit barmy, while other times they make you stop and think: “That could just work!”.

Such an idea is that of replacing the diesel engines in trucks with electric motors powered not by batteries but from overhead cables. An electric tractor unit would carry a relatively small battery for last-mile transit, but derive its highway power by extending a pantograph from its roof to a high-voltage cable above the road. It’s extremely seductive to the extent that there have even been trials of the system in more than one country, but does it stack up to a bit of analysis?

Time’s Up For Those Big Rigs

Siemens and Scania are justifiably proud of their electrified stretch of autobahn and electric trucks in Germany.
Siemens and Scania are justifiably proud of their electrified stretch of autobahn and electric trucks in Germany.

One thing that should be obvious to all is that moving our long-distance freight around by means of an individual fossil-fuel-powered  diesel engine for every 38 tonne or so freight container may be convenient, but it is hardly either fuel-efficient or environmentally friendly The most efficient diesel engines on the road are said to have a 43% efficiency, and when hauling an single load they take none of the economies of scale afforded to the diesel engines that haul for example a freight train. Similarly they spread any pollution they emit across  the entirety of their route, and yet again fail to benefit from the economies of scale present in for example a power station exhaust scrubber. However much I have a weakness for the sight of a big rig at full stretch, even I have to admit that its day has passed.

The battery technology being pursued for passenger cars is a tempting alternative, as we’ve seen with Tesla Semi. But for all its technology that vehicle still walks the knife-edge between the gain in cost-effectiveness versus the cost of hauling around enough batteries to transport that quantity of freight. Against that the overhead wire truck seems to offer the best of both worlds, the lightness and easy refueling of a diesel versus the lack of emissions from an electric. In the idealised world of a brochure it runs on renewable wind, sun, and water power, so all our problems are solved, right? But does it really stack up?

Continue reading “Our Trucks Won’t Need No Batteries! Electric Trucks Look To Overhead Wires For Power”

Boom Hopes To Reignite Supersonic Travel With XB-1

Since the last Concorde rolled to a stop in 2003, supersonic flight has been limited almost exclusively to military aircraft. Many have argued that it’s an example of our civilization seeming to slip backwards on the technological scale, akin to returning to the Age of Sail. There’s no debating that we have the capability of moving civilian passengers and cargo at speeds above Mach 1 safely, it’s just something that isn’t done anymore.

Concorde on its final flight, November 2003

Of course to be fair, there’s plenty of good reasons why the sky isn’t filled with supersonic aircraft. For one, they’ve historically been more drastically expensive to build and operate than their slower peers. The engineering that goes into an aircraft that can operate for an extended period of time at supersonic speeds doesn’t come cheap, nor do the materials required. But naturally, the same could have been said for commercial jet aircraft at one time. With further development, the cost would eventually come down.

The real problem holding supersonic aircraft back is much more practical: they are just too loud. From the roar of their powerful engines on takeoff to the startling and sometimes even dangerous “sonic boom” they leave in their wake, nobody wants them flying over their homes or communities. In fact, civilian flight above Mach 1 over land has been outlawed in the United States for exactly this reason since 1973 under the Federal Aviation Administration’s regulation 91.817.

For any commercial supersonic aircraft to be viable, it needs to not only be much cheaper to build and operate than older designs, but it also needs to be far quieter. Which is exactly what Boom hopes to demonstrate with their XB-1 prototype. The sleek craft will never enter into commercial service itself, but if all goes according to plan during its 2021 test flights, it may prove that the state-of-the-art in aircraft design is ready to usher in a new era of supersonic civilian transport.

Continue reading “Boom Hopes To Reignite Supersonic Travel With XB-1”