You Won’t Hear This Word On The Street

The simplest answer to a problem is not necessarily always the best answer. If you ask the question, “How do I get a voice assistance to work on a crowded subway car?”, the simplest answer is to shout into a microphone but we don’t want to ask Siri to put toilet paper on the shopping list in front of fellow passengers at the top of our lungs. This is “not a technical issue but a mental issue” according to [Masaaki Fukumoto], lead researcher at Microsoft in “hardware and devices” and “human-computer interaction.” SilentVoice was demonstrated in Berlin at the ACM Symposium on User Interface Software and Technology which showed a live transcription of nearly silent speech. A short demonstration can be found below the break.

SilentVoice relies on a different way of speaking and a different way of picking up that sound. Instead of traditional dictation in which we exhale while facing a microphone, it is necessary to place the microphone less than two millimeters from the mouth, usually against the lips, and use ingressive speech which is just whispering while inhaling. The advantage of ingressive over egressive speech is that without air being blown over the microphone, the popping of air gusts is eliminated. With practice, it is as efficient as normal speaking but that practice will probably involve a few dizzy spells from inhaling more than necessary.

Continue reading “You Won’t Hear This Word On The Street”

Glasses Frames Crafted Out Of Wood

Most glasses and sunglasses on the market make use of metal or plastic frames. It’s relatively easy to create all manner of interesting frame geometries, tolerances can be easily controlled for fitting optical elements, and they’re robust materials that can withstand daily use. Wood falls short on all of these measures, but that doesn’t mean you can’t use it to make a beautiful pair of glasses.

ZYLO is a company making wooden eyewear, and this video from [Paide] shows the build process in detail. Modern tools are used to make things as efficient as possible. Parts are lasercut and engraved to form the main part of the frames as well as the temples (the arms that sit over the ears to hold them on your face). A special jig is used to impart a curve on the laminated wood parts before further assembly is undertaken. Metal pre-fabricated hinges and screws are used to bolt everything together like most other modern sunglasses, but there’s significant hand finishing involved, including delicate inlays and highlighting logo features.

In contrast, Manuel Arroyave works very differently in the creation of his Cedoro glasses. Sheets are first laminated together, before the shape is roughed out by a special horizontal axis milling setup. Even small details like the hinges are delicately hand-crafted out of wood and fitted with tiny wooden dowels.

It goes to show that there’s always more than one way to get a job done. We’re tempted to break out the laser cutter and get started on some custom shades ourselves. Perhaps though, you’re too tired to put your sunglasses on by yourself? Nevermind, there’s a solution for that, too. Video after the break.

Continue reading “Glasses Frames Crafted Out Of Wood”

Tech Tattoos Trace Two Dimensions

Flexible circuit boards bend as you might expect from a playing card, while skin stretches more like knit fabric. The rules for making circuit boards and temporary tattoos therefore need to be different. Not just temporary tattoos, there are also circuits that reside on the skin so no unregulated heat traces, please. In addition to flexing and stretching, these tattoos can be applied to uneven surfaces and remain intact. Circuits could be added to the outside of projects or use the structure as the board to reduce weight and size. Both are possible with the research from Carnegie Mellon’s Soft Machines Lab and the Institute of Systems and Robotics at the University of Coimbra.

These circuits are an improvement over the existing method which relies on cropping away metal foil with a magnifying glass, tweezers and a steady hand. Instead, silver particles are printed with an inkjet printer before the traces are coated in eutectic gallium indium which is liquid metal at room temperature. If we were to oversimplify, we might describe it as similar to a non-toxic equivalent of mercury that we have also seen used in DIY OLEDs. This is a development likely to be interesting in a range of fields from medicine to cosplay.

Continue reading “Tech Tattoos Trace Two Dimensions”

Homemade Daft Punk Helmet

You may not be French, and you may not have had a series of hit records, but you can still have the blinky LED helmet, thanks to this build from [Electronoobs]. They have put together a neat Daft Punk helmet built from 3D printed parts, an Arduino, a Bluetooth module, a string of WS2812 addressable LEDs and a simple app. The helmet itself is 3D printed, and the Arduino, Bluetooth, and battery are mounted in the chin. The LED panel is a series of WS2812 LED light strips wired together in series. The whole thing is controlled over a Bluetooth connection to an Android app that was built with the MIT App Inventor.

It’s a nice, simple build, but as we’ve discussed before choosing diffusers is hard. We’re not sure if a thicker panel covering the LED strips, or flipping the LEDs over and adding a reflective layer would be the right moves to improve upon the diffused look. Either way, it’s a neat place to start with your own build and a good way to learn about how to have fun with LED strips.

Continue reading “Homemade Daft Punk Helmet”

Lenses For DIY Augmented Reality Will Get A Bit Less Unobtainable

You may remember that earlier this year Leap Motion revealed Project North Star, a kind of open-source reference design for an Augmented Reality (AR) headset. While it’s not destined to make high scores in the fashion department, it aims to be hacker-friendly and boasts a large field of view. There’s also an attractive element of “what you see is what you get” when it comes to the displays and optical design, which is a good thing for hackability. Instead of everything residing in a black box, the system uses two forward-facing displays (one for each eye) whose images are bounced off curved reflective lenses. These are essentially semitransparent mirrors which focus the images properly while also allowing the wearer to see both the displays and the outside world at the same time. This co-existence of both virtual and real-world visuals are a hallmark of Augmented Reality.

A serious setback to the aspiring AR hacker has been the fact that while the design is open, the lenses absolutely are not off the shelf components. [Smart Prototyping] aims to change that, and recently announced in a blog post that they will be offering Project North Star-compatible reflective lenses. They’re in the final stages of approving manufacture, and listed pre-orders for the lenses in their store along with downloadable 3D models for frames.

When Leap Motion first announced their open-source AR headset, we examined the intruiguing specifications and the design has since been published to GitHub.  At the time, we did note that the only option for the special lenses seemed to be to CNC them and then spring for a custom reflective coating.

If the lenses become affordable and mass-produced, that would make the design much more accessible. In addition, anyone wanting to do their own experiments with near-eye displays or HUDs would be able to use the frame and lenses as a basis for their own work, and that’s wonderful.

Get Your Tweets Without Looking

Head-mounted displays range from cumbersome to glass-hole-ish. Smart watches have their niche, but they still take your eyes away from whatever you are doing, like driving. Voice assistants can read to you, but they require a speaker that everyone else in the car has to listen to, or a headset that blocks out important sound. Ignoring incoming messages is out of the question so the answer may be to use a different sense than vision. A joint project between Facebook Inc. and the Massachusetts Institute of Technology have a solution which uses the somatosensory reception of your forearm.

A similar idea came across our desk years ago and seemed promising, but it is hard to sell something that is more difficult than the current technique, even if it is advantageous in the long run. In 2013, a wearer had his or her back covered in vibrator motors, and it acted like the haptic version of a spectrum analyzer. Now, the vibrators have been reduced in number to fit under a sleeve by utilizing patterns. It is being developed for people with hearing or vision impairment but what drivers aren’t impaired while looking at their phones?

Patterns are what really set this version apart. Rather than relaying a discrete note on a finger, or a range of values across the back, the 39 English phenomes are given a unique sequence of vibrations which is enough to encode any word. A phenome phoneme is the smallest distinct unit of speech. The video below shows how those phonemes are translated to haptic feedback. Hopefully, we can send tweets without using our hands or mouths to upgrade to complete telepathy.

Continue reading “Get Your Tweets Without Looking”

Kitty Yeung On Tech-Fashion Designs And The Wearables Industry

If there is a field which has promise verging on a true breakout, it is that of wearable electronics. We regularly see 3D printing, retrocomputing, robotics, lasers, and electric vehicle projects whose advances are immediately obvious. These are all exciting fields in which the Hackaday community continually push the boundaries, and from which come the astounding pieces of work you read on these pages daily. Of course the projects that merge textiles and electronics are pushing boundaries in the same way, except for that it’s often not obvious at first glance. Why is that?

Wearables are a field in which hard work and ingenuity abound, but pulling off the projects that stand out and go beyond mere ordinary garments adorned with a few twinkly LEDs or EL wire is hard. Wearables have a sense of either still seeking its killer application or its technological enabler, and it was this topic that physicist, textilist, and artist Kitty Yeung touched upon in her talk at the recent Hackaday Superconference.

Continue reading “Kitty Yeung On Tech-Fashion Designs And The Wearables Industry”