Digitize Your Room With LIDAR

What’s the best way to image a room? A picture? Hah — don’t be so old-fashioned! You want a LIDAR rig to scan the space and reconstruct it as a 3D point map in your computer.

Hot on the heels of [Saulius Lukse]’s scanning thermometer, he’s replaced the thermal camera on their pan/tilt setup with a time-of-flight (TOF) camera — a Garmin LIDAR — capable of 500 samples per second and end up scanning their room in a mere fifteen minutes. Position data is combined with the ranging information to produce a point cloud using Python. Open that file in a 3D manipulation program and you’ll be treated to a sight like this:

Continue reading “Digitize Your Room With LIDAR”

Printing Bed Off-Kilter? Blu-Tack To The Rescue!

For all their applications, 3D printers can be finicky machines. From extruder problems, misaligned or missing layers, to finding an overnight print turned into a tangled mess, and that’s all assuming your printer bed is perfectly leveled. [Ricardo de Azambuja’s] new linear delta printer was frustrating him. No matter what he did, it wouldn’t retain the bed leveling calibration, so he had to improvise — Blu-Tack to the rescue.

It turns out [Azambuja]’s problem was so bad that the filament wouldn’t even attempt to adhere to the printing bed. So, he turned to Printrun Pronterface and a combination of its homing feature and the piece-of-paper method to get a rough estimate of how much the bed needed to be adjusted — and a similar estimate of how big of a gob of Blu-Tack was needed.

Pressing the bed into place, he re-ran Pronterface to make sure he was on the level. [Azambuja] notes that you would have to redo this for every print, but it was good enough to print off a trio of bed leveling gears he designed so he doesn’t have to go through this headache again for some time.

Continue reading “Printing Bed Off-Kilter? Blu-Tack To The Rescue!”

Making Laser Cutter Designs Work In A 3D Printer

The main mechanical tools in a hacker’s shop used to be a drill press and a lathe. Maybe a CNC mill, if you were lucky. Laser cutters are still a rare tool to find in a personal shop, but today’s hackers increasingly have access to 3D printers. What happens when you have a design for a laser cutter (2D parts) but only have access to a 3D printer? You punt.

[DIY3DTECH] has a two-part video on taking a 2D design (in an SVG file) and bringing it into TinkerCad. At that point, he assembles the part in software and creates a printable object. You can see the videos below.

Continue reading “Making Laser Cutter Designs Work In A 3D Printer”

Ingenious Use Of 3D Printer Gives Simba The Mane He Deserves

Here at Hackaday, we love clever 3D prints. This amazing lion statue remixed by [ _primoz_], makes us feel no different. It is no secret that FDM 3D printers have come a long way, propelled by the enthusiastic support from the open source community.

However, FDM 3D printers have some inherent limitations; some of which arise from a finite print nozzle diameter, tracing out the 3D object layer by layer. Simply put, some print geometries and dimensions are just unattainable. We discussed the solution to traditional FDM techniques being confined to Planer layers only in a previous article.

The case in point here is a 3D printed lion whose original version did not fully capture its majestic mane. [_primoz_] solution was to construct a support cylinder around the head and form the actual hair as a series of planar bristles, which were one extrusion wide.

6d2b2c7253516ff7b54ee1d3be0aa6a7_display_large

This was followed by some simple post processing, where a heat gun was used to form the bristles into a dapper mane.

The result is rather glorious and we can’t wait for someone to fire up a dual extruder and bring out the flexible filament for this print!

[via Thingiverse]

Spinning 3D POV Display: A High School Term Project

If you are a fan of sci-fi shows you’ll be used to volumetric 3D displays as something that’s going to be really awesome at some distant point in the future. It’s been about forty years since a virtual 3D [Princess Leia] was projected to Star Wars fans from [R2D2]’s not-quite-a-belly-button, while in the real world it’s still a technology with some way to go. We’ve seen LED cubes, spinning arrays, and lasers projected onto spinning disks, but nothing yet to give us that Wow! signaling that the technology has truly arrived.

We are starting to see these displays move from the high-end research lab into the realm of hackers and makers though, and the project we have for you here is a fantastic example. [Balduin Dettling] has created a spinning LED display using multiple sticks of addressable LEDs mounted on a rotor, and driven by a Teensy 3.1. What makes this all the more remarkable is that he’s a secondary school student at a Gymnasium school in Germany (think British grammar school or American prep school).

volumetric-pov-display-built-by-high-schooler-led-boardsThere are 480 LEDs in his display, and he addresses them through TLC5927 shift registers. Synchronisation is provided by a Hall-effect sensor and magnet to detect the start of each rotation, and the Teensy adjusts its pixel rate based on that timing. He’s provided extremely comprehensive documentation with code and construction details in the GitHub repository, including a whitepaper in English worth digging into. He also posted the two videos we’ve given you below the break.

What were you building in High School? Did it involve circuit design, mechanical fabrication, firmware, and documentation? This is an impressive set of skills for such a young hacker, and the type of education we like to see available to those interested in a career in engineering.

Continue reading “Spinning 3D POV Display: A High School Term Project”

All Your Displays Are Belong To Us

Artist and Hackaday reader [Blair Neal] wrote in with his incredible compendium of “alternative” displays. (Here as PDF.) From Pepper’s Ghost to POV, he’s got it all covered, with emphasis on their uses in art.

There’s an especially large focus on 3D displays. Projecting onto screens, droplets of water, spinning objects, and even plasma combustion are covered. But so are the funny physical displays: flip-dots, pin-cushions, and even servo-driven “pixels”.

Flavien Théry’s La Porte 
Flavien Théry’s La Porte

We really liked the section on LCDs with modified polarization layers — we’ve seen some cool hacks using that gimmick, but the art pieces he dredged up look even better. Makes us want to take a second look at that busted LCD screen in the basement.

We’re big fans of the bright and blinky, so it’s no surprise that [Blair] got a bunch of his examples from these very pages. And we’ve covered [Blair]’s work as well: both his Wobbulator and his “Color a Sound” projects. Hackaday: your one-stop-shop for freaky pixels.

[Blair]’s list looks pretty complete to us, but there’s always more out there. What oddball displays are missing? What’s the strangest or coolest display you’ve ever seen?

Absolute 3D Tracking With EM Fields

[Chris Gunawardena] is still holding his breath on Valve and Facebook surprising everyone by open sourcing their top secret VR prototypes. They have some really clever ways to track the exact location and orientation of the big black box they want people to strap to their faces. Until then, though, he decided to take his own stab at the 3D tracking problems they had to solve. 

While they used light to perform the localization, he wanted to experiment with using electromagnetic fields to perform the same function. Every phone these days has a magnetometer built in. It’s used to figure out which way is up, but it can also measure the local strength of magnetic fields.

Unfortunately to get really good range on a magnetic field there’s a pesky problem involving inverse square laws. Some 9V batteries in series solved the high current DC voltage source problem and left him with magnetic field powerful enough to be detected almost ten centimeters away by his iPhone’s magnetometer.

As small as this range seems, it ended up being enough for his purposes. Using the existing math and a small iOS app he was able to perform rudimentary localization using EM fields. Pretty cool. He’s not done yet and hopes that a more sensitive magnetometer and a higher voltage power supply with let him achieve greater distances and accuracy in a future iteration.