Bioelectronic implants with size reference

Batteries Not Included: Navigating The Implants Of Tomorrow

Tinkerers and tech enthusiasts, brace yourselves: the frontier of biohacking has just expanded. Picture implantable medical devices that don’t need batteries—no more surgeries for replacements or bulky contraptions. Though not all new (see below), ChemistryWorld recently shed new light on these innovations. It’s as exciting as it is unnerving; we, as hackers, know too well that tech and biology blend a fine ethical line. Realising our bodies can be hacked both tickles our excitement and unsettlement, posing deeper questions about human-machine integration.

Since the first pacemaker hit the scene in 1958, powered by rechargeable nickel-cadmium batteries and induction coils, progress has been steady but bound by battery limitations. Now, researchers like Jacob Robinson from Rice University are flipping the script, moving to designs that harvest energy from within. Whether through mechanical heartbeats or lung inflation, these implants are shifting to a network of energy-harvesting nodes.

From triboelectric nanogenerators made of flexible, biodegradable materials to piezoelectric devices tapping body motion is quite a leap. John Rogers at Northwestern University points out that the real challenge is balancing power extraction without harming the body’s natural function. Energy isn’t free-flowing; overharvesting could strain or damage organs. A topic we also addressed in April of this year.

As we edge toward battery-free implants, these breakthroughs could redefine biomedical tech. A good start on diving into this paradigm shift and past innovations is this article from 2023. It’ll get you on track of some prior innovations in this field. Happy tinkering, and: stay critical! For we hackers know that there’s an alternative use for everything!

FingerRing Is Simplest Multichannel Mixer

It’s hard to make an audio mixer with any less technology than FingerRing (YouTube video, embedded below). We’re pretty sure that [Sergey Kasich] isn’t going to get a patent on this one. But what he does get is our admiration for pushing a simple idea far enough that it’s obviously useful.

The basic idea is transmitting signals using the human body as a conductor. What [Sergey] does is lay out multiple sound sources and sinks on the table, and then play them like a mixer made musical instrument. Pressing harder reduces the resistance, and makes the sound louder. Connecting to two sources mixes them (in you). Watch the video — he gets a lot of mileage out of this one trick.

Continue reading “FingerRing Is Simplest Multichannel Mixer”

Impedance Tomography Is The New X-Ray Machine

Seeing what’s going on inside a human body is pretty difficult. Unless you’re Superman and you have X-ray vision, you’ll need a large, expensive piece of medical equipment. And even then, X-rays are harmful part of the electromagnetic spectrum. Rather than using a large machine or questionable Kryptonian ionizing radiation vision, there’s another option now: electrical impedance tomography.

[Chris Harrison] and the rest of a research team at Carnegie Mellon University have come up with a way to use electrical excitation to view internal impedance cross-sections of an arm. While this doesn’t have the resolution of an X-ray or CT, there’s still a large amount of information that can be gathered from using this method. Different structures in the body, like bone, will have a different impedance than muscle or other tissues. Even flexed muscle changes its impedance from its resting state, and the team have used their sensor as proof-of-concept for hand gesture recognition.

This device is small, low power, and low-cost, and we could easily see it being the “next thing” in smart watch features. Gesture recognition at this level would open up a whole world of possibilities, especially if you don’t have to rely on any non-wearable hardware like ultrasound or LIDAR.

CyberPunk Yourself – Body Modification, Augmentation, And Grinders

“We accept pain as a price of doing business, even if it is just for aesthetic purposes. You want to put a magnet in your finger, a doctor will ask you why; a mod artist will ask when you can start.” As with many other people who are part of the growing grinder movement, [Adam] has taken a step that many would consider extreme – he’s begun to augment his body.

Grinders – men and women who hack their own bodies – are pushing the boundaries of what is currently possible when it comes to human augmentation. They’re hackers at heart, pursuing on an amateur level what they can’t get from the consumer market. Human augmentation is a concept that is featured heavily in science fiction and futurism, but the assumption most people have is that those kinds of advancements will come from medical or technology companies.

Instead, we’re seeing augmentation begin in the basements of hackers and in the back rooms of piercing studios. The domain of grinders is the space where body modification and hacking meet. It mixes the same willingness to modify one’s body that is common among the tattooed and pierced, and adds an interest in hacking technology that you find in hackerspaces around the world. When those two qualities intersect, you have a potential grinder.

Continue reading “CyberPunk Yourself – Body Modification, Augmentation, And Grinders”

Amazing Chassis Hacks

[Crabfu] pulled off some great chassis work on top of a remote control drivetrain. His most recent build turns the tiny traveler into a lunar rover complete with passenger and a communications array. For this he’s sourced the parts from a toy but boosted the realism with hand-painted details that leave us in awe. His previous project sourced the body from a model truck kit. Once again, it’s the paint work that makes us envious of his skills.

Both projects conceal a Losi 1/24 scale micro rock crawler that provides for some incredible locomotion. See video of both builds after the break.

Continue reading “Amazing Chassis Hacks”