Hackaday Prize 2022: A Spring-Driven Digital Movie Camera

These days, most of us are carrying capable smartphones with high-quality cameras. It makes shooting video so easy as to take all the fun out of it. [AIRPOCKET] decided to bring that back, by converting an old spring-driven 8mm film camera to shoot digital video.

The camera in question is a magazine-fed Bell & Howell Model 172 from the 1950s. In its original spring-driven form, it could shoot for approximately 35 seconds at a (jerky) frame rate 16 fps.

In this build, though, the film is replaced with a digital imaging system designed to fit in the same space as the original magazine. A Raspberry Pi Zero 2 was pressed into service, along with a rechargeable battery and Pi camera module. The camera is timed to synchronise with the shutter mechanism via a photosensor.

Since it uses the original optics and shutter speed, the resulting video is actually very reminiscent of the Super 8 cameras of the past. It’s an impressive way to get a retro film effect straight into a digital output format. The alternative is to just shoot on film and scan it afterwards, of course! Video after the break.

Continue reading “Hackaday Prize 2022: A Spring-Driven Digital Movie Camera”

A Hacky Automatic Camera Slider Using No Motors

Camera sliders are a great way to get smooth, continuous panning shots. You can buy off the shelf or build yourself a motorized model pretty easily these days. However, [Shivam Dehinwal] came up with a hack that’s even simpler again.

The design uses a 3D-printed base which mounts the camera on top. Four wheels are installed underneath to allow the base to roll on smooth surfaces.

Inside the base, there’s a slot to install a Komelon Touch Lock measuring tape, with the tape’s auto-retract mechanism used to create the sliding function. Pressing the center disc on the measuring tape brakes the tape retract mechanism. The harder you press, the more it slows down.

In the slider, this is achieved with a screw-in puck that contacts the tape measure’s brake. Tighten the puck down, and the tape measure retracts very slowly, moving the slider at a crawl. Leave the puck loose, and the tape measure retracts more quickly for faster panning shots.

It’s a neat way to build a camera slider, of which we’ve seen many before in the past. It never needs batteries and adjustment is as easy as turning a screw. Sometimes the simple ways have their charms. Video after the break.

Continue reading “A Hacky Automatic Camera Slider Using No Motors”

Sputtering Daguerreotypes, Batman!

The Daguerreotype was among the earliest photographic processes, long before glass plates or film, that relied on sensitizing a thin layer of silver on top of a copper plate. The earliest Daguerreotype plates were made physically, by rolling a copper-silver plate thinner and thinner until the silver layer was just right. Good luck finding a source of Daguerreotype plates made this way in 2022. (There are electroplating methods, but they all end up with chemically contaminated silver.)

On the other hand, magnetron sputtering is a process of depositing pure metal in thin layers using plasma, high voltages, and serious magnets, and [Koji Tokura] is making his own sputtered Daguerreotype plates this way, giving him the best of both worlds: the surreal almost-holographic quality of the Daguerreotype with the most difficult film preparation procedure imaginable.

The star of the show is [Koji]’s sputtering rig, which consists of a Tupperware glass sandwich box as a vacuum chamber and a microwave oven transformer as the high voltage source. In use, he pumps the chamber down, introduces a small amount of argon, and then lights up the plasma. The high voltage accelerates the plasma ions into a sheet of silver, and the silver particles that get knocked free coat the copper plate. A strong magnet creates a local plasma, which accelerates the coating procedure, but since [Koji] only had a relatively small magnet, he scans the plate with the magnet, using a scavenged 2D pen plotter mechanism.

Check out his video on the Hackaday.io page, and his Daguerreotype gallery as well. (We don’t think that they were all made with this procedure.)

The result is a chemically pure Daguerreotype plate produced in a seriously modern way, and we’d love to see the images in person. In these days of disposable images made by the AIs in your cell phone, it’s nice to see some people taking photography in strange directions. For instance, maybe you’d like to make your own ultra-large collodion plates. Or something else? If you do, show us!

On the left side, there's a smartphone. On the right side, there's a hairdryer turned on. On the smartphone screen, you can see the working end of the hairdryer shown, as well as a jet of air coming out of that end. In the background, there's an LCD screen showing a noise pattern.

Observe Airflow Using Smartphone And Background-Oriented Schlieren

Multiple people have recently shared this exciting demonstration (nitter) with us – visualizing airflow using a smartphone, called ‘background-oriented schlieren’. On a hot summer day, you might see waves in the air – caused by air changing density as it warms up, and therefore refracting the light differently. Schlieren photography is an general set of techniques for visualizing fluid flow, but of course, it can also be applied to airflow. In this case, using some clever optical recognition tricks, this schlieren method lets you visualize flow of air using only your Android smartphone’s high resolution camera and a known-pattern printed background! Continue reading “Observe Airflow Using Smartphone And Background-Oriented Schlieren”

Game Boy Repurposed Solely As A Camera

As much as we all love the Game Boy Camera, it’s really just an add-on to the popular handheld console. Twitter user [@thegameboycam] decided to build a dedicated camera platform using the hardware, and the result was the Game Boy DSLR.

Camera pedants will note that it’s not really a DSLR, but that’s not really the point. It’s a Game Boy with the camera accessory built into a proper camera-like housing. There’s a CS/C mount for the lens, and it’s got a custom shell with leatherette, just like the cameras of last century. It’s also got a cold shoe, and a 1/4″ screw thread for tripod mounting. Oh, and strap lugs! So you can really rock that old-school aesthetic with your tweed suit on.

More practical modern features include a 1800 mAh battery that charges over USB Type C and a backlit IPS display. The screen has been turned through 90 degrees, and the cartridge port and buttons are relocated to create a more traditional camera-like form factor. If you really want, though, you can still play it like a regular Game Boy. Just swap out the modified camera cart with the lens mount for a regular Game Boy Camera or another game cartridge.

It’s a fun hack that scores big on style points. No longer can you be the cool kid just by rocking a Game Boy with a big ol’ lens hanging off the back. Now you gotta compete with this!

Our tipsline is waiting for when you’ve got the next big thing in Game Boy Camera hacks. Video after the break.

Continue reading “Game Boy Repurposed Solely As A Camera”

Converting A Sigma Lens To Canon, Digital Functionality Included

These days, camera lenses aren’t just simple bits of glass in sliding metal or plastic housings. They’ve often got a whole bunch of electronics built in as well. [Dan K] had just such a lens from Sigma, but wanted to get it working fully with a camera using the Canon EF lens fitting. Hacking ensued.

The lens in question was a Sigma 15-30mm f/3.5-4.5 EX DG, built to work with a Sigma camera using the SA mount. As it turns out, the SA mount is actually based on the Canon EF mount, using the same communications methods and having a similar contact block. However, it uses a mechanically different mounting bayonet, making the two incompatible.

[Dan] sourced a damaged EF lens to provide its mount, and modified it on a lathe to suit the Sigma lens. A short length of ribbon cable was then used to connect the lens’s PCB to the EF mount’s contacts. When carefully put back together, the lens worked perfectly, with functional auto-focus and all.

It goes to show that a little research can reveal possibilities for hacking that we might otherwise have missed. [Dan] was able to get his lens up and running on a new camera, and has taken many wonderful pictures with it since.

We’ve seen some great lens hacks over the years, from 3D printed adapters to anamorphic adapters that create beautiful results. If you’ve got your own mad camera hacks brewing up, drop us a line!

Lenses: From Fire Starters To Smart Phones And VR

In antiquity, we see examples of magnifying crystals formed into a biconvex shape as early as the 7th century BC. Whether the people of that period used them either for fire-starting purposes or vision is unclear. Still, it is famously said that Emperor Nero of Rome watched gladiator games through an emerald.

Needless to say, the views we get through modern lenses are a lot more realistic. So how did we get from simple magnifying systems to the complex lens systems we see today? We start with a quick journey through the history of the camera and the lens, and we’ll end up with the cutting edge in lens design for smartphone cameras and VR headsets.

Continue reading “Lenses: From Fire Starters To Smart Phones And VR”