Drone Buoy Drifts Along The Gulf Stream For Citizen Science

It may be named after the most famous volleyball in history, but “Wilson” isn’t just a great conversationalist. [Hayden Brophy] built the free-drifting satellite buoy to see if useful science can be done with off-the-shelf hardware and on a shoestring budget. And from the look of the data so far, Wilson is doing pretty well.

Wilson belongs to a class of autonomous vessels known as drifters, designed to float along passively in the currents of the world’s ocean. The hull of [Hayden]’s drifter is a small Pelican watertight case, which contains all the electronics: Arduino Pro Trinket, GPS receiver, a satellite modem, and a charger for the LiPo battery. The lid of the case is dominated by a 9 W solar panel, plus the needed antennas for GPS and the Iridium uplink and a couple of sensors, like a hygrometer and a thermometer. To keep Wilson bobbing along with his solar panel up, there’s a keel mounted to the bottom of the case, weighted with chains and rocks, and containing a temperature sensor for the water.

Wilson is programmed to wake up every 12 hours and uplink position and environmental data as he drifts along. The drifter was launched into the heart of the Gulf Stream on August 8, about 15 nautical miles off Marathon Key in Florida, by [Captain Jim] and the very happy crew of the “Raw Deal”. As of this writing, the tracking data shows that Wilson is just off the coast of Miami, 113 nautical miles from launch, and drifting along at a stately pace of 2.5 knots. Where the buoy ends up is anyone’s guess, but we’ve seen similar buoys make it all the way across the Atlantic, so here’s hoping that hurricane season is kind to Wilson.

We think this is great, and congratulations to [Hayden] for organizing a useful and interesting project.

Continue reading “Drone Buoy Drifts Along The Gulf Stream For Citizen Science”

True Craftsmanship: Pneumatic Powered Drone Wasn’t Made To Fly

From time to time it’s good to be reminded that mechanical engineering can also be art. [José Manuel Hermo Barreiro], also known as [Patelo], is a retired naval mechanic with a love for scale model engines. Using only basic tools and a lathe, he has built a non-flying hexacopter display model, each propeller turned by a tiny single cylinder motor that runs on compressed air. From the tiny components of the valve systems, the brass framed acrylic windows into the crankcases, and the persistence of vision disc on the exhaust, the attention to detail is breathtaking.

One of the six hand crafted pneumatic motors

[Patelo] started the project on paper, and created a set of detailed hand-drawn blueprints to work from. Sadly a large part of the build took place during lockdown, and was not filmed, but we still get to see some work on a crankcase, connecting rod, camshaft, propellers, flywheel, and exhaust tubes. It is very clear that [Patelo] knows his way around his lathe very well, and is very creative with custom tools and jigs. The beautiful machine took approximately 1,560 hours to build, consists of 265 individually made parts held together with 362 screws.

We previously featured tiny V-12 engine that [Patelo] built around 2012. At that time he was 72 years of age, which means he should be around 80 now. We can only hope to come to emulate him one day, and that we get to see more of what comes out of his workshop. Hats off to you, sir.

Sky Anchor Puts Radios Up High, No Tower Needed

When it comes to radio communications on the VHF bands and above, there’s no substitute for elevation. The higher you get your antenna, the farther your signal will get out. That’s why mountaintops are crowded with everything from public service radios to amateur repeaters, and it’s the reason behind the “big stick” antennas for TV and radio stations.

But getting space on a hilltop site is often difficult, and putting up a tower is always expensive. Those are the problems that the Sky Anchor, an antenna-carrying drone, aims to address. The project by [Josh Starnes] goes beyond what a typical drone can do. Rather than relying on GPS for station keeping, [Josh] plans a down-looking camera so that machine vision can keep the drone locked over its launch site. To achieve unlimited flight time, he’s planning to supply power over a tether. He predicts a 100′ to 200′ (30 m to 60 m) working range with a heavy-lift octocopter. A fiberoptic line will join the bundle and allow a MIMO access point to be taken aloft, to provide wide-area Internet access. Radio payloads could be anything from SDR-based transceivers to amateur repeaters; if the station-keeping is good enough, microwave links could even be feasible.

Sky Anchor sounds like a great idea that could have applications in disaster relief and humanitarian aid situations. We’re looking forward to seeing how [Josh] develops it. In the meantime, what’s your world-changing idea? If you’ve got one, we’d love to see it entered in the 2020 Hackaday Prize.

Aggressive Indoor Flying Thanks To SteamVR

With lockdown regulations sweeping the globe, many have found themselves spending altogether too much time inside with not a lot to do. [Peter Hall] is one such individual, with a penchant for flying quadcopters. With the great outdoors all but denied, he instead endeavoured to find a way to make flying inside a more exciting experience. We’d say he’s succeeded.

The setup involves using a SteamVR virtual reality tracker to monitor the position of a quadcopter inside a room. This data is then passed back to the quadcopter at a high rate, giving the autopilot fast, accurate data upon which to execute manoeuvres. PyOpenVR is used to do the motion tracking, and in combination with MAVProxy, sends the information over MAVLink back to the copter’s ArduPilot.

While such a setup could be used to simply stop the copter crashing into things, [Peter] doesn’t like to do things by half measures. Instead, he took full advantage of the capabilities of the system, enabling the copter to fly aggressively in an incredibly small space.

It’s an impressive setup, and one that we’re sure could have further applications for those exploring the use of drones indoors. We’ve seen MAVLink used for nefarious purposes, too. Video after the break.

Continue reading “Aggressive Indoor Flying Thanks To SteamVR”

Quadcopter With Stereo Vision

Flying a quadcopter or other drone can be pretty exciting, especially when using the video signal to do the flying. It’s almost like a real-life video game or flight simulator in a way, except the aircraft is physically real. To bring this experience even closer to the reality of flying, [Kevin] implemented stereo vision on his quadcopter which also adds an impressive amount of functionality to his drone.

While he doesn’t use this particular setup for drone racing or virtual reality, there are some other interesting things that [Kevin] is able to do with it. The cameras, both ESP32 camera modules, can make use of their combined stereo vision capability to determine distances to objects. By leveraging cloud computing services from Amazon to offload some of the processing demands, the quadcopter is able to recognize faces and keep the drone flying at a fixed distance from that face without needing power-hungry computing onboard.

There are a lot of other abilities that this drone unlocks by offloading its resource-hungry tasks to the cloud. It can be flown by using a smartphone or tablet, and has its own web client where its user can observe the facial recognition being performed. Presumably it wouldn’t be too difficult to use this drone for other tasks where having stereoscopic vision is a requirement.

Thanks to [Ilya Mikhelson], a professor at Northwestern University, for this tip about a student’s project.

Building And Flying A Helicopter With A Virtual Swashplate

They say that drummers make the best helicopter pilots, because to master the controls of rotary-wing aircraft, you really need to be able to do something different with each limb and still have all the motions coordinate with each other. The control complexity is due to the mechanical complexity of the swashplate, which translates control inputs into both collective and cyclical changes in the angle of attack of the rotor blades.

As [Tom Stanton] points out in his latest video, a swashplate isn’t always needed. Multicopters dispense with the need for one by differentially controlling four or more motors to provide roll, pitch, and yaw control. But thanks to a doctoral thesis he found, it’s also possible to control a traditional single-rotor helicopter by substituting flexible rotor hinges and precise motor speed control for the swashplate.

You only need to watch the slow-motion videos to see what’s happening: as the motor speed is varied within a single revolution, the tips of the hinged rotor blades lead and lag the main shaft in controlled sections of the cycle. The hinge is angled, which means the angle of attack of each rotor blade changes during each rotation — exactly what the swashplate normally accomplishes. As you can imagine, modulating the speed of a motor within a single revolution when it’s spinning at 3,000 RPM is no mean feat, and [Tom] goes into some detail on that in a follow-up video on his second channel.

It may not replace quadcopters anytime soon, but we really enjoyed the lesson in rotor-wing flight. [Tom] always does a great job of explaining things, whether it’s the Coandă effect or anti-lock brakes for a bike.

Continue reading “Building And Flying A Helicopter With A Virtual Swashplate”

Justice For The Gatwick Two: The Final Chapter In The British Drone Panic Saga

At the end of 2018, a spate of drone sightings caused the temporary closure of London Gatwick Airport, and set in train a chain of events that were simultaneously baffling and comedic as the authorities struggled to keep up with both events and the ever widening gap in their knowledge of the subject.

One of the more inept actions of the Sussex Police was to respond by arresting the first local drone enthusiast they could find on Facebook, locking up a local couple for 36 hours and creating a media frenzy by announcing the apprehension of the villains before shamefacedly releasing them without charge.

In a final twist to the sorry saga, the couple have sued the force for wrongful arrest and false imprisonment, for which the cops have had to make a £200,000 ($250,117) payout including legal fees.

We reported extensively on the events surrounding the case 18 months ago, and then on a follow-up event at London Heathrow airport. The mass media at the time were full of the official line that drone hobbyists must be at fault, but then as now we were more interested in seeing some hard evidence. As we said then: Show us the drone.

So how has the new drone law progressed, since it was decided that Something Must Be Done? Enthusiasts have continued as before, and the multirotor community is as technically creative as ever. We were fortunate enough to host the Lets Drone Out podcast at MK Makerspace back in those halcyon days before the pandemic and see the state of the art in sub-250g craft, and with those and commercial offerings such as the DJI Mavic Mini all requiring no registration there is increasingly little need for an enthusiast to purchase a larger machine. The boost to the British drone industry we were promised has instead been a boost for the Chinese industry as we predicted, and of course we’re still waiting for the public inquiry into the whole mess. Something tells us Hell will freeze over first.

If you’d like the whole backstory in a convenient and entertaining video format, can we direct you to this talk at CCCamp 2019.

Thanks [Stuart Rogers] for the tip.

Keystone Kops header image: Mack Sennett Studios [Public domain].