Bicopter Phone Case Might Be Hard To Pocket, But Delivers Autonomous Selfies

Remember that “PhoneDrone” scam from a while back? With two tiny motors and props that could barely lift a microdrone, it was pretty clearly a fake, but that doesn’t mean it wasn’t a pretty good idea. Good enough, in fact, that [Nick Rehm] came up with his own version of the flying phone case, which actually works pretty well.

In the debunking collaboration between [Mark Rober], [Peter Sripol], and the indispensable [Captain Disillusion], you’ll no doubt recall that after showing that the original video was just a CGI scam, they went on to build exactly what the video purported to do. But alas, the flying phone they came up with was manually controlled. While cool enough, [Nick Rehm], creator of dRehmFlight, can’t see such a thing without wanting to make it autonomous.

To that end, [Nick] came up with the DroneCase — a bicopter design that allows the phone to hang vertically. The two rotors are on a common axis and can swivel back and forth under control of two separate micro-servos; the combination of tilt rotors and differential thrust gives the craft full aerodynamic control. A modified version of dRehmFlight runs on a Teensy, while an IMU, a lidar module, and a PX4 optical flow sensor round out the sensor suite. The lidar and flow sensor both point down; the lidar is used to sense altitude, while the flow sensor, which is basically just the guts from an optical mouse, watches for translation in the X- and Y-axes.

After a substantial amount of tuning and tweaking, the DroneCase was ready for field tests. Check out the video below for the results. It’s actually quite stable, at least as long as the batteries last. It may not be as flexible as a legit drone, but then again it probably costs a lot less, and does the one thing it does quite well without any inputs from the user. Seems like a solid win to us.

Continue reading “Bicopter Phone Case Might Be Hard To Pocket, But Delivers Autonomous Selfies”

Flappy Bird Drone Edition

Ornithopters have been — mostly — the realm of science fiction. However, a paper in Advanced Intelligent Systems by researchers at Lund University proposes that flapping wings may well power the drones of the future. The wing even has mock feathers.

Birds, after all, do a great job of flying, and researchers think that part of it is because birds fold their wings during the upstroke. Mimicking this action in a robot wing has advantages. For example, changing the angle of a flapping wing can help a bird or a drone fly more slowly.

Continue reading “Flappy Bird Drone Edition”

Drone Rescue Uses VHS Tape And Careful Planning

If you regularly fly your drones outdoors, you’ve probably worried about getting your pride and joy stuck in a big tree at some point. But flying indoors doesn’t guarantee you’ll be safe either, as [Scott Williamson] found out. He once got his tiny 65 mm Mobula 6HD quadcopter stuck in a roof beam at an indoor sports complex, and had to set about a daring rescue.

The first job was recon, with [Scott] sending up another drone to survey the situation. From there, he set about trying to prod the stuck quadcopter free with a improvised lance fitted to the front of a larger drone. But this ended up simply getting the larger bird stuck as well. It eventually managed to free itself, though it was damaged severely when [Scott] caught it as it fell. As told to Hackaday, [Scott] thus decided he needed to build a mock-up of the situation at home, to help him devise a rescue technique.

In the end, [Scott] settled on a grappling hook made of paperclips. A drone lofted a long length of VHS tape over the roof beam, and he then attached the grappling hook from ground level. The VHS tape was then used to reel the hook up to the rafters, and snare the drone, bringing it back down to Earth.

It took some perseverance, but [Scott] ended up rescuing his tiny drone from its lofty prison. The part we love most about this story, though, is that [Scott] planned the recovery like a heist or a cave rescue operation.

Continue reading “Drone Rescue Uses VHS Tape And Careful Planning”

2022 FPV Contest: A Poor Man’s Journey Into FPV

FPV can be a daunting hobby to get into. Screens, cameras, and other equipment can be expensive, and there’s a huge range of hardware to choose from. [JP Gleyzes] has been involved with RC vehicles for many years, and decided to leverage that experience to do FPV on a budget.

Early experiments involved building a headset on the cheap by using a smartphone combined with a set of simple headset magnifiers. With some simple modifications to off-the-shelf hardware, [JP] was able to build a serviceable headset with  a smartphone serving as the display. Further work relied upon 3D printed blinds added on to a augmented-reality setup for even better results. [JP] also developed methods to use a joystick to fly a real RC aircraft. This was achieved by using an Android phone or ESP32 to interface with a joystick, and then spit out data to a board that produces PPM signals for broadcast by regular RC hardware.

[JP] put the rig to good use, using it to pilot a Parrot Disco flying wing drone. The result is a cheap method of flying FPV with added realism. The first-person view and realistic controls create a more authentic feeling of being “inside” the RC aircraft.

It goes to show that FPV rigs don’t have to break the bank if you’re willing to get creative. We’ve seen some great FPV cockpit builds before, too.

Continue reading “2022 FPV Contest: A Poor Man’s Journey Into FPV”

Start Your Engines: The FPV Contest Begins Now!

There are places that you can go in person, but for everything else, there’s FPV. Whether you’re flying race quads, diving the depths in a yellow submarine, or simply roving the surface of the land, we want to see your builds. If it’s remote controlled, and you feel like you’re in the pilot’s seat, it’s FPV.

That’s you in the car.

When you say “first person view” many of you will instinctively follow up with “flight” or “drone”. But given the ease of adding a camera and remote control to almost any vehicle, there’s no reason to only fly the FPV skies. (Of course, we want to see your crazy quadcopter builds too.)

We went looking for a few less-traditional examples to whet your appetite, and we found a lot. There are super-cute FPV bots for indoors and more robust tanks for cruising around the neighborhood. In the summer, you’ll probably need an FPV lawnmower, and for the winter, naturally, an FPV snowblower or a budget-friendly FPV snow-boat. Or skip the outdoors entirely and terrorize the pool with an FPV sub.

This contest isn’t exclusively about the vehicles either. If you’re working on the tech that makes FPV possible, we want you to enter. For instance, this simple quad/drone tracker will help keep your video feed running and your mind on flying. This cockpit will make the immersion more complete. And nobody likes the jello-cam effect that excess vibration can cause, so we’d like to see camera hacks as well.

And of course, your quads. Is your FPV quad too fast, too light, or does it fly too far? Show us. The contest starts now and runs until Jan 3, 2023, and there are three $150 shopping sprees courtesy of Digi-Key on the line. Get hacking!

If Your Drone Flies, Eat It!

Over the years we’ve featured countless drone projects here at Hackaday, fixed wing, rotary wing, multi-rotor, and more. Among them all we think there may be a type that we’ve never seen, but that is about to change as it’s the first time we’ve brought you an edible drone.

Why might you need an edible drone, you ask? It’s not to conceal the evidence after closing an airport — instead it’s a research project from the Swiss Federal Institute of Technology to produce an efficient means of bringing sustenance to stranded climbers. The St. Bernard dogs are out of a job, it’s now done the modern way!

Jokes aside, this is clearly an experimental craft, a fixed-wing monoplane whose wings are made from rice cakes and gelatin. A stranded climber could certainly munch away at those airofoils, but we’re guessing a real device would need something a little more nutritious while retaining the light cellular structure.

This may be our first edible drone, but it’s not the first piece of edible technology we’ve brought you.

Clever Control Loop Makes This Spinning Drone Fault-Tolerant

Most multi-rotor aircraft are about as aerodynamic as a brick. Unless all its motors are turning and the control electronics are doing their thing, most UAVs are quickly destined to become UGVs, and generally in spectacular fashion. But by switching up things a bit, it’s possible to make a multi-rotor drone that keeps on flying even without two-thirds of its motors running.

We’ve been keeping a close eye on [Nick Rehm]’s cool spinning drone project, which basically eschews a rigid airframe for a set of three airfoils joined to a central hub. The collective pitch of the blades can be controlled via a servo in the hub, and the whole thing can be made to rotate and provide lift thanks to the thrust of tip-mounted motors and props. We’ve seen [Nick] manage to get this contraption airborne, and hovering is pretty straightforward. The video below covers the next step: getting pitch, roll, and yaw control over the spinning blades of doom.

The problem isn’t trivial. First off, [Nick] had to decide what the front of a spinning aircraft even means. Through the clever uses of LED strips mounted to the airfoils and some POV magic, he was able to visually indicate a reference axis. From there he was able to come up with a scheme to vary the power to each motor as it moves relative to the reference axis, modulating it in either a sine or cosine function to achieve roll and pitch control. This basically imitates the cyclic pitch control of a classic helicopter — a sort of virtual swashplate.

The results of all this are impressive, if a bit terrifying. [Nick] clearly has control of the aircraft even though it’s spinning at 250 RPM, but even cooler is the bit where he kills first one then two motors. It struggles, but it’s still controllable enough for a bumpy but safe landing.

Continue reading “Clever Control Loop Makes This Spinning Drone Fault-Tolerant”