Electric Bike From The Ground Up

Electric vehicles are getting more traction these days, but this trend is rolling towards us in more ways than just passenger vehicles. More and more bikes are being electrified too, since the cost of batteries has come down and people realize that they can get around town easily without having to pay the exorbitant price to own, fuel, and maintain a car. Of course there are turnkey ebikes, but those don’t interest us much around here. This ebike from [Andy] is a master class in how to build your own ebike.

Due to some health issues, [Andy] needed a little bit of assistance from an electric motor on his bike, but found out that the one he wanted wouldn’t fit his current bike quite right. He bought a frame from eBay with the right dimensions and assembled the bike from scratch. Not only that, but when it was time to put the battery together he sourced individual 18650 cells and built a custom battery for the bike. His build goes into great detail on how to do all of these things, so even if you need a lithium battery for another project this build might be worth a read.

If you’ve never been on an electric bike before, they’re a lot of fun to ride. They’re also extremely economical, and a good project too if you’re looking for an excuse to go buy a kit and get to work. You can get creative with the drivetrain too if you’d like to do something out of the box, such as this bike that was powered by AA batteries and a supercapacitor.

Testing DIY battery pack on E-bike

[GreatScott] Tests His DIY Battery Pack On His E-Bike

[GreatScott] has now joined the ranks of Electric Bike users. Or has he? We previously covered how he made his own lithium-ion battery pack to see if doing so would be cheaper than buying a commercially made one. But while it powered his E-bike conversion kit on his benchtop, turning the motor while the wheel was mounted in a vice, that’s no substitution for a real-world test with him on a bike on the road.

Since then he’s designed and 3D printed an enclosure for his DIY battery pack and mounted it on his bike along with most of the rest of his E-bike kit. He couldn’t use the kit’s brake levers since his existing brake levers and gear-shift system share an enclosure. There also weren’t enough instructions in the kit for him to mount the pedal assistance system. But he had enough to do some road testing.

Based on a GPS tracker app on his phone, his top speed was 43 km/h (27 miles per hour). His DIY 5 Ah battery pack was half full after 5 km (3.1 miles) and he was able to ride 11.75 km (7.3 miles) on a single charge. So, success! The battery pack did the job and if he needs to go further then he can build a bigger pack with some idea of how it would improve his travel distance.

Sadly though, he had to remove it all from his bike since he lives in Germany and European rules state that for it to be considered an electric bike, it must be pedal assisted and the speed must the be progressively reduced as it reaches a cut-off speed of 25 km/h (15 miles per hour). In other words, his E-bike was more like a moped or small motorcycle. But it did offer him some good opportunities for hacking, and that’s often enough. Check out his final assembly and testing in the video below.

Continue reading “[GreatScott] Tests His DIY Battery Pack On His E-Bike”

Make or buy lithium ion battery pack

Comparing Making To Buying A Lithium Ion Battery Pack

At Hackaday we’re all about DIY. However, projects can have many components, and so there’s sometimes a choice between making something or buying it. In this case, [GreatScott!] wondered if it would be cheaper to make or buy a lithium-ion battery pack for his new eBike kit. To find out, he decided to make one.

After some calculations, he found he’d need thirteen 18650 cells in series but decided to double the capacity by connecting another thirteen in parallel. That gave him a 5 Ah capacity battery pack with a nominal voltage of 48.1 V and one capable of supplying a constant current of 40 A. Rather than connect them by soldering the nickel strips, he purchased a kWeld battery spot welder, adding to the cost of the build. He charged his new battery pack using his bench power supply but being concerned about uneven charging of the cells over the battery pack’s lifetime, he added a Battery Management System (BMS). The resulting battery pack powers his eBike motor just fine.

After adding up all the costs, he found it was only a tiny bit cheaper than prices for comparable battery packs on eBay, which were €24.4 per Ah (US$29.5 per Ah). The only way it would be cheaper is if he made multiple packs, spreading out the one-time cost of the battery spot welder. So that means it’s really up to your preference. See his video below to judge for yourself if you’d rather do it the DIY way. And then let us know what you’d do in the comments below.

Continue reading “Comparing Making To Buying A Lithium Ion Battery Pack”

Impressive Electric Quad Bike

[EV4] is a small Polish company that makes electric vehicles, like this rather cool electric quad It’s an impressive build, including two 1 kW motors and a tilting turning system that makes it more maneuverable than most quad bikes. It has big, wide tires, a raised battery and longitudinal arms that mean it can climb over obstacles. That all makes it great for off-road use, and it’s just 60 cm (just under 24 inches) wide, which is much smaller than most quad bikes. It also has a top speed of 35 km/h, which would make it somewhat illegal to use on the public roads in many places. As someone who can’t ride a two-wheel bike because of a lousy sense of balance, I’d love to build something like this. Has anyone got plans for something similar?

Continue reading “Impressive Electric Quad Bike”

Hackaday Prize Entry: Smart Electric Bike Controller

One of the more interesting yet underrated technological advances of the last decade or so is big brushless motors and high-capacity batteries. This has brought us everything from quadcopters to good electric cars, usable cordless power tools, and of course electric bicycles. For his Hackaday Prize project, [marcus] is working on a very powerful electric bicycle controller. It can deliver 1000 Watts, it’s got Bluetooth, and there’s even an Android app for some neat diagnostics.

The specs for this eBike controller are pretty much what you would expect. It’s able to deliver a whole Kilowatt, can use 48 V batteries, has regenerative braking, Hall sensors, and has a nifty Android app for settings, displaying speed, voltage and power consumption, diagnostics, and GPS integration.

How is the project progressing? [marcus] has successfully failed a doping test. He lives on the French Riviera, and the Col de la Madonne is a famous road cycling road and favorite test drive of [Lance Armstrong]. The trip from Nice to Italy was beautiful and ended up being a great test of the eBike controller.

extending an ebike

Extending The Range Of An Electric Bike

Cruising around town on your electric bike is surely a good time…. unless your bike runs out of juice and you end up pedaling a heavy bike, battery, and motor back to your house. This unfortunate event happened to Troy just one too many times. The solution: to extend the range of his electric bike without making permanent modifications.

Troy admits his electric bike is on the lower side of the quality scale. On a good day he could get about 15 miles out of the bike before it required a recharge. He looked into getting more stock battery packs that he could charge and swap out mid-trip but the cost of these was prohibitive. To get the extra mileage, Troy decided on adding a couple of lead-acid batteries to the system.

The Curry-brand bike used a 24vdc battery. Troy happened to have two 12v batteries kicking around, which wired up in series would get him to his 24v goal. The new batteries are mounted on the bike’s cargo rack by way of some hardware store bracketry. The entire new ‘battery pack’ can be removed quickly by way of a few wing nuts.

Connecting the new batteries to the stock system go a little tricky and the stock battery pack did have to be modified slightly. The case was opened and leads were run from the positive and negative terminals to two new banana plugs mounted in the battery pack’s case. The leads from the new batteries plug right into the banana plugs on the stock battery pack. The new and old batteries are wired in parallel to keep the voltage at 24.

Troy found that he’s getting about twice the distance out of his new setup. Not to bad for a couple on-hand batteries and a few dollars in odds and ends.

Electric Chainsaw Teardown

An electric chainsaw with its case removed

For his Beyond Unboxing series, [Charles] tore apart a Ryobi cordless chainsaw to get a better look at how this battery powered tool works.

Inside he found a three-phase motor and controller. This motor looks like it could be useful in other projects since it has a standard shaft. The battery pack was popped open to reveal a set of LG Chem 21865 cells, and some management hardware.

With all the parts liberated from the original enclosure, [Charles] set up the motor, controller, and battery on the bench. With a scope connected, some characterization of the motor could be done. A load was applied by grabbing the spinning shaft with welding gloves. [Charles] admits that this isn’t the safest way to test a motor.

While it is a very fast motor, the cut-in speed was found to be rather low. That means it can’t start a vehicle from a stop, but could be useful on e-bikes or scooters which are push started.

This chainsaw a $200 motor, controller, and battery set that could be the basis of a DIY scooter. It sounds great too, as the video after the break demonstrates.

[Thanks to Dane for the tip!]

Continue reading “Electric Chainsaw Teardown”