This Week In Security: Default Passwords, Lock Slapping, And Mastodown

The UK has the answer to all our IoT problems: banning bad default passwords. Additionally, the new UK law requires device makers to provide contact info for vulnerability disclosures, as well as a requirement to advertise vulnerability fix schedules. Is this going to help the security of routers, cameras, and other devices? Maybe a bit.

I would argue that default passwords are in themselves the problem, and complexity requirements only nominally help security. Why? Because a good default password becomes worthless once the password, or algorithm leaks. Let’s lay out some scenarios here. First is the static default password. Manufacturer X makes device Y, and sets the devices to username/password admin/new_Complex_P@ssword1!. Those credentials make it onto a default password list, and any extra security is lost.

What about those devices that have a different, random-looking password for each device? Those use an algorithm to derive that password from the MAC address and/or serial number. That may help the situation, but the algorithm can be retrieved from the firmware, and most serial numbers are predictable in one way or another. This approach is better, but not a silver bullet.

So what would a real solution to the password problem look like? How about no default password at all, but no device functionality until the new password passes a cracklib complexity and uniqueness check. I have seen a few devices that do exactly this. The requirement for a disclosure address is a great idea, which we’ve talked about before regarding the similar EU legislation.

Continue reading “This Week In Security: Default Passwords, Lock Slapping, And Mastodown”

Linux Fu: Stupid Systemd Tricks

Last time, I gave a whirlwind introduction to a very small slice of systemd. If you aren’t comfortable with systemd services, timers, and mounts, you might want to read that now. Otherwise, press on to see a few interesting uses for custom systemd units, including running a few things on a schedule and automatically mounting a Raspberry Pi Zero.

Can you do every one of these things in a different way? Of course you can. I’m not debating the relative merits of using or not using systemd. However, unless you totally control your own environment, good chance you are going to have to interact with systemd at some point.

Stupid Trick #1: Update Your IP Address

A few years ago, I talked about updating your remote DNS server with your public IP address. This lets you refer to a hostname like snoopy.hackaday.com and get back to your computer that often changes IP addresses. Sure, you can get services to do that for you, but you must either pay or agree to read ads on their site to keep your hostname going. This is all under your control. In the original post, I suggested using cron or NetworkManager to run the update script. I also hinted you could do it with systemd, but I didn’t tell you how. Let’s fix that.

Continue reading “Linux Fu: Stupid Systemd Tricks”

Linux Fu: Getting Started With Systemd

I will confess. I started writing this post about some stupid systemd tricks. However, I wanted to explain a little about systemd first, and that wound up being longer than the tricks. So this Linux Fu will be some very fundamental systemd information. The next one will have some examples, including how to automount a Raspberry Pi Pico. Of course, by the end of this post, you’ll have only scratched the surface of systemd, but I did want to give you some context for reading through the rest of it.

Like many long-time Unix users, I’m not a big fan of systemd. Then again, I’m also waiting for the whole “windows, icon, mouse, pointer” fad to die down. Like it or not, systemd is here and probably here to stay for the foreseeable future. I don’t want to get into a flame war over systemd. Love it or hate it, it is a fact of life. I will say that it does have some interesting features. I will also say that the documentation has gotten better over time. But I will also say that it made many changes that perhaps didn’t need to be made and made some simple things more complicated than they needed to be.

In the old days, we used “init scripts,” and you can still do so if you are really motivated. They weren’t well documented either, but it was pretty easy to puzzle out the shell scripts that would run, and we all know how to write shell scripts. The systemd way is to use services that are not defined by shell scripts. However, systemd tries to do lots of other things, too. It can replace cron and run things periodically. It can replace inetd, syslog, and many other traditional services. This is a benefit or a drawback, depending on your point of view.

(Editor’s note: And this logging functionality was exactly what was abused in last week’s insane liblzma / ssh backdoor.)

Configuring systemd requires you to create files in one of several locations. In systemd lingo, they are “units.” For the purpose of this Linux Fu, we’ll look at only a few kinds of units: services, mounts, and timers. Services let you run programs in response to something like system start-up. You can require that certain other services are already running or are not running and many other options. If the service dies, you can ask systemd to automatically restart it, or not. Timers can trigger a service at a particular time, much like cron does. Another unit you’ll run into are sockets that represent — you guessed it — a network socket.

Continue reading “Linux Fu: Getting Started With Systemd”

Webserver Runs On Android Phone

Android, the popular mobile phone OS, is essentially just Linux with a nice user interface layer covering it all up. In theory, it should be able to do anything a normal computer running Linux could do. And, since most web servers in the world are running Linux, [PelleMannen] figured his Android phone could run a web server just as well as any other Linux machine and built this webpage that’s currently running on a smartphone, with an additional Reddit post for a little more discussion.

The phone uses Termux (which we’ve written about briefly before) to get to a Bash shell on the Android system. Before that happens, though, some setup needs to take place largely involving installing F-Droid through which Termux can be installed. From there the standard SSH and Apache servers can be installed as if the phone were running a normal Linux The rest of the installation involves tricking the phone into thinking it’s a full-fledged computer including a number of considerations to keep the phone from halting execution when the screen locks and other phone-specific issues.

With everything up and running, [PelleMannen] reports that it runs surprisingly well with the small ARM system outputting almost no heat. Since the project page is being hosted on this phone we can’t guarantee that the link above works, though, and it might get a few too many requests to stay online. We wish it were a little easier to get our pocket-sized computers to behave in similar ways to our regular laptops and PCs (even if they don’t have quite the same amount of power) but if you’re dead-set on repurposing an old phone we’ve also seen them used to great effect in place of a Raspberry Pi.

Grep By Example is also available as a PDF Minibook, and a Grep playground helps you learn quickly.

Galvanize Your Grip On Grep With This Great Grep Guide

These days, you can’t throw a USB stick without hitting something that’s running Linux. It might be a phone, an embedded device, or your TV. Either way, it’s running Linux, and somewhere along the line of the development of whatever your USB stick smacked into, somebody used the Global Regular Expression Print utility- better known as Grep. But what is Grep, and why do you need it? [Anton Zhiyanov] not only answers those questions but provides Grep by example: Interactive Guide to help you along.

Grep By Example is also available as a PDF Minibook, and a Grep playground helps you learn quickly.
Grep By Example is also available as a PDF Minibook, and a Grep playground helps you learn quickly.

To understand Linux, one must understand its commercial predecessor, Unix. One of the things that made Unix (and then Linux) unique was its philosophy: Write programs that work together, do one thing well, and handle text streams.  This philosophy describes a huge number of programs, and one of these programs is Grep. It’s installed everywhere there’s a *nix installed, and once one becomes familiar with it, their command-line-fu reaches an all new level.

At its core, Grep is simply a bloodhound. It’s scent? A magical incantation called Regular Expressions. Regular Expressions (aka Regex) are simply a way of describing what a stream of text should look like. So when you feed Grep a bit of Regular Expression, it Prints only the text that matches that expression. Neat, right?

The trouble is that Regex can be kind of hard, and Grep has various versions and capabilities that need to be learned. And this is where the article shines- it covers both in an excellent interactive tutorial that’ll help you become a Grep Guru in no time. And if you want to do a deeper dive, check out what it takes to make your own Regex Engine from scratch!

Hackaday Links Column Banner

Hackaday Links: March 10, 2024

We all know that we’re living in a surveillance state that would make Orwell himself shake his head, but it looks like at least one company in this space has gone a little rogue. According to reports, AI surveillance start-up Flock <<insert gratuitous “What the Flock?” joke here>> has installed at least 200 of its car-tracking cameras on public roads in South Carolina alone. That’s a serious whoopsie, especially since it’s illegal to install anything on state infrastructure without permission, which it appears Flock failed to obtain. South Carolina authorities are making a good show of being outraged about this, but it sort of rings hollow to us, especially since Flock now claims that 70% of the population (of the USA, we presume) is covered by their technology. Also, police departments across the country are in love with Flock’s service, which lets them accurately track the movements of potential suspects, which of course is everyone. No word on whether Flock will have to remove the rogue cameras, but we’re not holding our breath.

Continue reading “Hackaday Links: March 10, 2024”

Upgrading PC Cooling With Software

As computing power increases with each new iteration of processors, actual power consumption tends to increase as well. All that waste heat has to go somewhere, and while plenty of us are content to add fans and heat sinks for a passable air-cooled system there are others who prefer a liquid cooling solution of some sort. [Cal] uses a liquid cooler on his system, but when he upgraded his AMD chip to one with double the number of cores he noticed the cooling fans on the radiator were ramping quickly and often. To solve this problem he turned to Python instead of building a new cooling system.

The reason for the rapid and frequent fan cycling was that the only trigger for the cooling fans available on his particular motherboard is CPU temperature. For an air cooled system this might be fine, but a water cooled system with much more thermal mass should be better able to absorb these quick changes in CPU temperature without constantly adjusting fan speed. Using a python script set up to run as a systemd service, the control loop monitors not only the CPU temperature but also the case temperature and the temperature of the coolant, and then preferentially tries to dump heat from the CPU into the thermal mass of the water cooler before much ramping of cooling fans happens.

An additional improvement here is that the fans can run at a much lower speed, reducing dust in the computer case and also reducing noise compared to before the optimizations. The computer now reportedly runs almost silently unless it has been under load for several minutes. The script is specific to this setup but easily could be modified for other computers using liquid cooling, and using Grafana to monitor the changes can easily be done as [Cal] also demonstrates when calibrating and testing the system. On the other hand, if you prefer a more flashy cooling system as a living room centerpiece, we have you covered there as well.