Assistive Gloves Come In Pairs

We have to hand it to this team, their entry for the 2020 Hackaday Prize is a classic pincer maneuver. A team from [The University of Auckland] in New Zealand and [New Dexterity] is designing a couple of gloves for both rehabilitation and human augmentation. One style is a human-powered prosthetic for someone who has lost mobility in their hand. The other form uses soft robotics and Bluetooth control to move the thumb, fingers, and an extra thumb (!).

The human-powered exoskeleton places the user’s hand inside a cabled glove. When they are in place, they arch their shoulders and tighten an artificial tendon across their back, which pulls their hand close. To pull the fingers evenly, there is a differential box which ensures pressure goes where it is needed, naturally. Once they’ve gripped firmly, the cables stay locked, and they can relax their shoulders. Another big stretch and the cords relax.

In the soft-robotic model, a glove is covered in inflatable bladders. One set spreads the fingers, a vital physical therapy movement. Another bladder acts as a second thumb for keeping objects centered in the palm. A cable system draws the fingers closed like the previous glove, but to lock them they evacuate air from the bladders, so jamming layers retain their shape, like food in a vacuum bag.

We are excited to see what other handy inventions appear in this year’s Hackaday Prize, like the thumbMouse, or how about more assistive tech that uses hoverboards to help move people?

Continue reading “Assistive Gloves Come In Pairs”

The Cyborgs Among Us: Exoskeletons Go Mainstream

Every technological advancement seems to have a sharp inflection point, a time before which it seems like any early adopters are considered kooks, but beyond which the device or service quickly becomes so mainstream that non-adopters become the kooky ones. Take cell phones, for example – I clearly remember a news report back in the 1990s about some manufacturers crazy idea to put a digital camera in a phone. Seemingly minutes later, you couldn’t buy a phone without a camera.

It seems like we may be nearing a similar inflection point with a technology far more complex and potentially far more life-altering than cameras in cell phones: powered exoskeletons. With increasing numbers of news stories covering advancements in exoskeletal assistants for the elderly, therapeutic applications for those suffering from spinal cord injuries and neurodegenerative diseases, and penetration into the workplace – including the battlefield – as amplifiers of human effort, it’s worth taking a look at where we are with exoskeletons before seeing someone using one in public becomes so commonplace as to go unnoticed.

Continue reading “The Cyborgs Among Us: Exoskeletons Go Mainstream”

Virtual Physical Rehab With Kinect

Web sites have figured out that “gamifying” things increases participation. For example, you’ve probably boosted your postings on a forum just to get a senior contributor badge (that isn’t even really a badge, but a picture of one). Now [Yash Soni] has brought the same idea to physical therapy.

[Yash]’s father had to go through boring physical therapy to treat a slipped disk, and it prompted him into developing KinectoTherapy which aims to make therapy more like a video game. They claim it can be used to help many types of patients ranging from stroke victims to those with cerebral palsy.

Patients can see their onscreen avatar duplicate their motions and can provide audio and visual feedback when the player makes a move correctly or incorrectly. Statistical data is also available to the patient’s health care professionals.

Continue reading “Virtual Physical Rehab With Kinect”

Sensor Sleeve Makes Tablet Use Easier And Benefitial For Disabled Children

tablet-accessiblity-hack

Pinch-zoom is a godsend (and shouldn’t be patent-able) and although we mourn the loss of a physical keyboard on a lot of device we use a tablet nearly as often as we do a full computer. But the touch screen interface is not open to everyone. Those who lack full dexterity of their digits will find the interface frustrating at best or completely unusable at worst. A team of researchers from the Atlanta Pediatric Device Consortium came up with a way to control touch-screen tablets with a sensor array that mounts on your arm.

The project — called Access4Kids — looks not only to make tablet use possible, but to use it as a means of rehabilitation. The iPad seen above is running a custom app designed for use with the sensor sleeve. The interface is explained in the video after the break. Each sensor can serve as an individual button, but the hardware can also process sequential input from all three as a swipe in one direction or the other. If they can get the kids interested in the game it ends up being its own physical therapy coach by encouraging them to practice their upper body motor skills.

Continue reading “Sensor Sleeve Makes Tablet Use Easier And Benefitial For Disabled Children”

3D Printed Exoskeleton Helps This Little Girl Develop More Normal Body Function

This 2-year-old girl has a condition called arthrogryposis which causes her not to be able to move her arms. But with a little help, her muscles can be strengthened to achieve more normal use of her limbs. This is not the first time that an exoskeleton has been used, but the advent of 3D printed parts makes the skeleton work much better.

Previous exoskeletons were made of metal and were quite heavy. When you’re talking about a 25 pound child every extra ounce counts. Moving to plastic parts lightened the load. Now the structure can be mounted on her torso, using rubber bands to aid her movement until her muscles are strong enough to do it on their own.

Of course to [Emma] this isn’t an exoskeleton. It’s her set of magic arms.

Continue reading “3D Printed Exoskeleton Helps This Little Girl Develop More Normal Body Function”

Dad Hacks Cerebral Palsy, Upgrades Son’s Lifestyle

[Jorge]’s son was born in 2004 after a troubling time in the womb. The son, [Ivo], wasn’t getting enough oxygen and unfortunately developed cerebral palsy. [Jorge] took it upon himself to improve his son’s life, so he got busy building some machinery for physical therapy. Today, [Ivo] is able to walk very well without the need for braces or other aids.

[Ivo] has a form of CP called Spastic quadriplegia. With [Ivo]’s disorder, his skeletal muscles are always tight meaning he’s nearly unable to walk. This can be treated with muscle relaxants such as Botox (yes, that Botox), but [Jorge] wanted to help out with his son’s physical therapy.

[Jorge] began preparing for [Ivo]’s physical therapy by building a “tripod” for him. This allows [Ivo] to stand while taking part in physical activities like ping-pong and golf. The second phase of the training was a modification to a cross-country skiing/elliptical trainer that allowed [Ivo] to practice walking. Today, [Ivo] is happily walking very well, a testament to his dad’s wishes that he has somewhat normal life. Some aluminum tubing helped, but we’re pinning this one on his dad.