Kaleidoscopico Shows Off Pi Pico’s Capabilities

In the early days of computing, and well into the era where home computers were common but not particularly powerful, programming these machines was a delicate balance of managing hardware with getting the most out of the software. Memory had to be monitored closely, clock cycles taken into account, and even video outputs had to be careful not to overwhelm the processor. This can seem foreign in the modern world where double-digit gigabytes of memory is not only common, it’s expected, but if you want to hone your programming skills there’s no better way to do it than with the limitations imposed by something like a retro computer or a Raspberry Pi Pico.

This project is called Kaleidoscopio, built by [Linus Åkesson] aka [lft] and goes deep into the hardware of the Pi Pico in order to squeeze as much out of the small, inexpensive platform as possible. The demo is written with 17,000 lines of assembly using the RISC-V instruction set. The microcontroller has two cores on it, with one core acting as the computer’s chipset and the other acts as the CPU, rendering the effects. The platform has no dedicated audio or video components, so everything here is done in software using this setup to act as a PC from the 80s might. In this case, [lft] is taking inspiration from the Amiga platform, his favorite of that era.

The only hardware involved in this project apart from the Pi Pico itself are a few resistors, an audio jack, and a VGA port, further demonstrating that the software is the workhorse in this build. It’s impressive not only for wringing out as much as possible from the platform but for using the arguably weaker RISC-V cores instead of the ARM cores, as the Pi Pico includes both. [lft] goes into every detail on the project’s page as well, for those who are still captivated by the era of computer programming where every bit mattered. For more computing demos like this, take a look at this one which is based on [lft]’s retrocomputer of choice, the Amiga.

Continue reading “Kaleidoscopico Shows Off Pi Pico’s Capabilities”

Checking In On The ISA Wars And Its Impact On CPU Architectures

An Instruction Set Architecture (ISA) defines the software interface through which for example a central processor unit (CPU) is controlled. Unlike early computer systems which didn’t define a standard ISA as such, over time the compatibility and portability benefits of having a standard ISA became obvious. But of course the best part about standards is that there are so many of them, and thus every CPU manufacturer came up with their own.

Throughout the 1980s and 1990s, the number of mainstream ISAs dropped sharply as the computer industry coalesced around a few major ones in each type of application. Intel’s x86 won out on desktop and smaller servers while ARM proclaimed victory in low-power and portable devices, and for Big Iron you always had IBM’s Power ISA. Since we last covered the ISA Wars in 2019, quite a lot of things have changed, including Apple shifting its desktop systems to ARM from x86 with Apple Silicon and finally MIPS experiencing an afterlife in  the form of LoongArch.

Meanwhile, six years after the aforementioned ISA Wars article in which newcomer RISC-V was covered, this ISA seems to have not made the splash some had expected. This raises questions about what we can expect from RISC-V and other ISAs in the future, as well as how relevant having different ISAs is when it comes to aspects like CPU performance and their microarchitecture.

Continue reading “Checking In On The ISA Wars And Its Impact On CPU Architectures”

Screenshot of Linux in a PDF in a browser

Nice PDF, But Can It Run Linux? Yikes!

The days that PDFs were the granny-proof Swiss Army knives of document sharing are definitely over, according to [vk6]. He has managed to pull off the ultimate mind-bender: running Linux inside a PDF file. Yep, you read that right. A full Linux distro chugging along in a virtual machine all encapsulated within a document. Just when you thought running DOOM was the epitome of it. You can even try it out in your own browser, right here. Mind-boggling, or downright Pandora’s box?

Let’s unpack how this black magic works. The humble PDF file format supports JavaScript – with a limited standard library, mind you. By leveraging this, [vk6] managed to compile a RISC-V emulator (TinyEMU) into JavaScript using an old version of Emscripten targeting asm.js instead of WebAssembly. The emulator, embedded within the PDF, interfaces with virtual input through a keyboard and text box.

The graphical output is ingeniously rendered as ASCII characters – each line displayed in a separate text field. It’s a wild solution but works astonishingly well for something so unconventional.

Security-wise, this definitely raises eyebrows. PDFs have long been vectors for malware, but this pushes things further: PDFs with computational power. We know not to trust Word documents, whether they just capable of running Doom, or trash your entire system in a blink. This PDF anomaly unfolds a complete, powerful operating system in front of your very eyes. Should we think lightly, and hope it’ll lead to smarter, more interactive PDFs – or will it bring us innocent looking files weaponized for chaos?

Curious minds, go take a look for yourself. The project’s code is available on GitHub.

Continue reading “Nice PDF, But Can It Run Linux? Yikes!”

T1 Is A RISC-V Cray

The crux of most supercomputers is the ability to operate on many pieces of data at once — something video cards are good at, too. Enter T1 (short for Torrent-1), a RISC-V vector inspired by the Cray X1 vector machine.

T1 has support for features, including lanes and chaining. The chip contains a version of the Rocket Core for scalar operations, but there’s no official support for using it. The project claims you could easily replace that core with any other RISC-V CPU IP.

Continue reading “T1 Is A RISC-V Cray”

RISC-V Microcontroller Lights Up Synth With LED Level Meter

The LM3914 LED bar graph driver was an amazing chip back in the day. Along with the LM3915, its logarithmic cousin, these chips gave a modern look to projects, allowing dancing LEDs to stand in for a moving coil meter. But time wore on and the chips got harder to find and even harder to fit into modern projects, what with their giant DIP-18 footprint. What’s to be done when a project cries out for bouncing LEDs? Simple — get a RISC-V microcontroller and roll your own LED audio level meter.

In fairness, “simple” isn’t exactly what comes to mind while reading [svofski]’s write-up of this project. It’s part of a larger build, a wavetable synth called “Pétomane Ringard” which just screams out for lots of blinky LEDs. [svofski] managed to squeeze 20 small SMD LEDs onto the board along with a CH32V003 microcontroller. The LEDs are charlieplexed, using five of the RISC-V chip’s six available GPIO lines, leaving one for the ADC input. That caused a bit of trouble with programming, since one of those pins is needed to connect to the programmer. This actually bricked the chip, thankfully only temporarily since there’s a way to glitch the chip back to life, but only after pulling it out of the circuit. [svofski] recommends adding a five-second delay loop to the initialization routine to allow time to recover if the microcontroller gets into an unprogrammable state. Good tip.

As for results, we think the level meter looks fantastic. [svofski] went for automated assembly of the 0402 LEDs, so the strip is straight and evenly spaced. The meter seems to be quite responsive, and the peak hold feature is a nice touch. It’s nice to know there’s a reasonable substitute for the LM391x chips, especially now that all the hard work has been done.
Continue reading “RISC-V Microcontroller Lights Up Synth With LED Level Meter”

Writing A RISC-V OS From Scratch

If you read Japanese, you might have seen the book “Design and Implementation of Microkernels” by [Seiya Nuda]. An appendix covers how to write your own operating system for RISC-V in about 1,000 lines of code. Don’t speak Japanese? An English version is available free on the Web and on GitHub.

The author points out that the original Linux kernel wasn’t much bigger (about 8,500 lines). The OS allows for paging, multitasking, a file system, and exception handling. It doesn’t implement interrupt handling, timers, inter-process communication, or handling of multiple processors. But that leaves you with something to do!

The online book covers everything from booting using OpenSBI to building a command line shell. Honestly, we’d have been happier with some interrupt scheme and any sort of crude way to communicate and synchronize across processes, but the 1,000 line limit is draconian.

Since the project uses QEMU as an emulation layer, you don’t even need any special hardware to get started. Truthfully, you probably won’t want to use this for a production project, but for getting a detailed understanding of operating systems or RISC-V programming, it is well worth a look.

If you want something more production-ready, you have choices. Or, stop using an OS at all.

High Performance RISC-V

From the Institute of Computing Technology division of the Chinese Academy of Sciences and Peng Cheng Laboratory comes a high-performance and well-documented RISC-V core called XiangShan.

In the Git repository, you’ll find several branches including at least two stable branches: Yanqihu and Nanhu. The currently developed architecture, Kunminghu, is impressive, with a sophisticated instruction fetch unit, a reorder buffer, and a register renaming scheme.

The point of these types of circuits in a CPU is to allow multiple instructions to process at once. This also implies that instructions can be executed out of order. A cursory glance didn’t show any branch prediction logic, but that may be a limitation of the documentation. If there isn’t one, that would be an interesting thing to add in a fork if you are looking for a project.

On the computing side, the processor contains an integer block, a floating point unit, and a vector processor. Clearly, this isn’t a toy processor and has the capability to compete with serious modern CPUs.

There is a separate GitHub for documentation. It looks like they try to keep documentation in both Mandarin and English. You can also find some of the academic papers about the architecture there, too.

We love CPU design, and this is an interesting chance to contribute to an open CPU while there are still interesting things to do. If you need to start with something easier, plenty of small CPUs exist for educational purposes.