Ore To Iron In A Few Seconds: New Chinese Process Will Revolutionise Smelting

The process of ironmaking has relied for centuries on iron ore, an impure form of iron oxide, slowly being reduced to iron by carbon monoxide in a furnace. Whether that furnace is the charcoal fire of an Iron Age craftsman or a modern blast furnace, the fundamental process remains the same, even if the technology around it has been refined. Now details are emerging of a new take on iron smelting from China, which turns what has always been a slow and intensive process into one that only takes a few seconds. So-called flash ironmaking relies on the injection of a fine iron ore powder into a superheated furnace, with the reduction happening explosively and delivering a constant stream of molten iron.

Frustratingly there is little detail on how it works, with the primary source for the news coverage being a paywalled South China Morning Post article. The journal article alluded to has proved frustratingly difficult to find online, leaving us with a few questions as to how it all works. Is the reducing agent still carbon monoxide, for example, or do they use another one such as hydrogen? The interesting part from an economic perspective is that it’s said to work on lower-grade ores, opening up the prospect for the Chinese steelmakers relying less on imports. There’s no work though on how the process would deal with the inevitable slag such ore would create.

If any readers have journal access we’d be interested in some insight in the comments, and we’re sure this story will deliver fresh information over time. Having been part of building a blast furnace of our own in the past, it’s something we find interesting

Machining Copper From Algaecide

We love it when we find someone on the Internet who has the exact same problem we do and then solves it. [Hyperspace Pirate] starts a recent video by saying, “Oh no! I need to get rid of the algae in my pond, but I bought too much algaecide. If only there were a way to turn all this excess into CNC machined parts.” OK, we’ll admit that we don’t actually have this problem, but maybe you do?

Algaecide is typically made with copper sulfate. There are several ways to extract the copper, and while it is a little more expensive than buying copper, it is cost-competitive. Electrolysis works, but it takes a lot of power and time. Instead, he puts a more reactive metal in the liquid to generate a different sulfate, and the copper should precipitate out.

Continue reading “Machining Copper From Algaecide”

An image of an orange, translucent glowing quartz rod. Thermocouples can be seen at intervals along the rod looking in.

Industrial Solar Heat Hits 1000˚C

While electricity generation has been the star of the energy transition show, about half of the world’s energy consumption is to make heat. Many industrial processes rely on fossil fuels to reach high temps right now, but researchers at ETH Zurich have found a new way to crank up the heat with a solar thermal trap. [via SciTechDaily]

Heating water for showers or radiant floor systems in homes is old hat now, but industrial application of solar power has been few and far between. Part of the issue has been achieving high enough temperatures. Opaque absorbers can only ever get as hot as the incident surface where the sun hits them, but some translucent materials, like quartz can form thermal traps.

In a thermal trap, “it is possible to achieve temperatures that are higher in the bulk of the material than at the surface exposed to solar radiation.” In the study, the researchers were able to get a 450˚C surface to produce 1,050˚C interior temperature in the 300 mm long quartz rod. The system does rely on concentrated solar power, 135 suns-worth for this study, but mirror and lens systems for solar concentration already exist due to the aforementioned electrical power generation.

This isn’t the only time we’ve seen someone smelting on sunlight alone, and you can always do it less directly by using a hydrogen intermediary. If you’re wanting a more domestic-level of heat, why not try the wind if the sun doesn’t shine much in your neighborhood?

This Stainless Steel Knife Build Starts With Raw Iron Ore

Making knives at home has become a popular hobby, thanks partly to reality TV and the free time and idle hands afforded by lockdowns. Depending on how far you get into the hobby, builds can range from assembling and finishing a kit with pre-forged parts, to actual blacksmithing with a hammer and anvil. But pretty much every build includes steel from a commercial supplier.

Not this one. Rather than buy his metal from the usual sources, [Thoisoi]’s first stop was an iron mine in the Italian Alps, where he picked up a chunk of iron ore — magnetite, to be precise. Smelting one’s own iron from raw ore and alloying it into steel is generally not a backyard project thanks to the high temperatures needed, a problem [Thoisoi] solved with the magic of thermite. The iron oxide and aluminum in the thermite mix react in an exceptionally exothermic manner to generate elemental iron, which under controlled conditions can be captured as a more or less pure ingot, ready for forging.

After a test with commercially obtained iron oxide, [Thoisoi] tried his pulverized magnetite. And thanks to the addition of goodies like graphite, manganese, nickel, silicon, and chromium, he was eventually able to create a sizable lump of 402 stainless steel. He turned the metal over to an actual blacksmith for rough forging; it sure seemed to act like steel on the anvil. The finished knife looks good and performs well, and the blade has the characteristic look of stainless. Not a bad result, and all at the cost of a couple of clay flowerpots.

Continue reading “This Stainless Steel Knife Build Starts With Raw Iron Ore”

Mining And Refining: From Red Dirt To Aluminum

No matter how many syllables you use to say it, aluminum is one of the most useful industrial metals we have. Lightweight, strong, easily alloyed, highly conductive, and easy to machine, cast, and extrude, aluminum has found its way into virtually every industrial process and commercial product imaginable.

Modern life would be impossible without aluminum, and yet the silver metal has been in widespread use only for about the last 100 years. There was a time not all that long ago that aluminum dinnerware was a status symbol, and it was once literally worth more than its weight in gold. The reason behind its one-time rarity lies in the effort needed to extract the abundant element from the rocks that carry it, as well as the energy to do so. The forces that locked aluminum away from human use until recently have been overcome, and the chemistry and engineering needed to do that are worth looking into in our next installment of “Mining and Refining.”

Continue reading “Mining And Refining: From Red Dirt To Aluminum”

DIY Furnace Smelts Magnetite Sand Into An Impressive Chef’s Knife

Some people order their raw materials from a factory, missing out on 99% of the fun… or suffering, we’re not sure which. To make that call, you need to look in on the process [IllyriaD] used to collect magnetite sand and turn it into a wicked-looking chef’s knife.

This began by collecting 150 pounds (!) of magnetic dirt from dry lake beds while hiking using a magnet pickup tool with release lever that he got from Harbor Freight. Several repeated magnetic refining passes separated the black ore from non-metallic sands ready for the furnace that he built. That is used to fire up the raw materials using 150 pounds of charcoal, changing the chemical composition by adding carbon and resulting in a gnarly lump of iron known as a bloom.

From there, it’s just a matter of beating the iron bloom into submission over at the anvil. [IllyriaD] details the process of flattening it out to a bar shape, then folding it over. Seven total folds are made for 128 layers, and in the gallery there’s a fantastic image that captures the striation when viewed on end. After being sharpened and polished, you can see where the bevel descends through those layers.

It’s delightful to see people working through the old ways and proving you don’t need a factory, as long as your true goal is to explore the process itself. Does this leave you wanting even more? [IllyriaD] left some insight about the process in the comments of the reddit thread. You probably also want to check out the tile-roofed hut built by [PrimitiveTechnology] without any modern tools.

Water And Molten Aluminium Is A Dangerous Combination

It is not uncommon for a Hackaday writer to trawl the comments section of a given article, looking for insights or to learn something new. Often, those with experience in various fields will share kernels of knowledge or raise questions on a particular topic. Recently, I happened to be glazing over an article on aluminium casting with interest, given my own experience in the field. One comment in particular caught my eye.

 And no, the water won’t cause a steam explosion. There’s a guy on youtube (myfordlover, I think) who disproves that myth with molten iron, pouring the iron into water, pouring water into a ladle of molten iron and so on. We’ll be happy to do a video demonstrating this with aluminum if so desired.

Having worked for some time in an aluminium die casting plant, I sincerely hope [John] did not attempt this feat. While there are a number of YouTube videos showing that this can be done without calamity, there are many showing the exact opposite. Mixing molten aluminium and water often ends very poorly, causing serious injury or even fatalities in the workplace. Let’s dive deeper to see why that is.

Continue reading “Water And Molten Aluminium Is A Dangerous Combination”