Hackaday Links Column Banner

Hackaday Links: July 31, 2022

Don’t look up! As of the time of this writing, there’s a decent chance that a Chinese Long March 5B booster has already completed its uncontrolled return to Earth, hopefully safely. The reentry prediction was continually tweaked over the last week or so, until the consensus closed in on 30 Jul 2022 at 17:08 UTC, give or take an hour either way. That two-hour window makes for a LOT of uncertainty about where the 25-ton piece of space debris will end up. Given the last prediction by The Aerospace Corporation, the likely surface paths cover a lot of open ocean, with only parts of Mexico and South America potentially in the crosshairs, along with parts of Indonesia. It’s expected that most of the material in the massive booster will burn up in the atmosphere, but with the size of the thing, even 20% making it to the ground could be catastrophic, as it nearly was in 2020.

[Update: US Space Command confirms that the booster splashed down in the Indian Ocean region at 16:45 UTC. No word yet on how much debris survived, or if any populated areas were impacted.]

Good news, everyone — thanks to 3D printing, we now know the maximum height of a dive into water that the average human can perform without injury. And it’s surprisingly small — 8 meters for head first, 12 meters if you break the water with your hands first, and 15 meters feet first. Bear in mind this is for the average person; the record for surviving a foot-first dive is almost 60 meters, but that was by a trained diver. Researchers from Cornell came up with these numbers by printing models of human divers in various poses, fitting them with accelerometers, and comparing the readings they got with known figures for deceleration injuries. There was no mention of the maximum survivable belly flop, but based on first-hand anecdotal experience, we’d say it’s not much more than a meter.

Humans have done a lot of spacefaring in the last sixty years or so, but almost all of it has been either in low Earth orbit or as flybys of our neighbors in the Sol system. Sure we’ve landed plenty of probes, but mostly on the Moon, Mars, and a few lucky asteroids. And Venus, which is sometimes easy to forget. We were reminded of that fact by this cool video of the 1982 Soviet landing of Venera 14, one of only a few attempts to land on our so-called sister planet. The video shows the few photographs Venera 14 managed to take before being destroyed by the heat and pressure on Venus, but the real treat is the sound recording the probe managed to make. Venera 14 captured the sounds of its own operations on the Venusian surface, including what sounds like a pneumatic drill being used to sample the regolith. It also captured, as the narrator put it, “the gentle blow of the Venusian wind” — as gentle as ultra-dense carbon dioxide hot enough to melt lead can be, anyway.

Continue reading “Hackaday Links: July 31, 2022”

Hackaday Links Column Banner

Hackaday Links: June 12, 2022

“Don’t worry, that’ll buff right out.” Alarming news this week as the James Webb Space Telescope team announced that a meteoroid had hit the space observatory’s massive primary mirror. While far from unexpected, the strike on mirror segment C3 (the sixth mirror from the top going clockwise, roughly in the “south southeast” position) that occurred back in late May was larger than any of the simulations or test strikes performed on Earth prior to launch. It was also not part of any known meteoroid storm in the telescope’s orbit; if it had been, controllers would have been able to maneuver the spacecraft to protect the gold-plated beryllium segments. The rogue space rock apparently did enough damage to be noticeable in the data coming back from the telescope and to require adjustment to the position of the mirror segment. While it certainly won’t be the last time this happens, it would have been nice to see one picture from Webb before it started accumulating hits.

Continue reading “Hackaday Links: June 12, 2022”

Wireless Power: Here? Now?

Outside of very small applications, Nikola Tesla’s ideas about transmitting serious power without wires have not been very practical. Sure, we can draw microwatts from radio signals in the air, and if you’re willing to get your phone in just the right spot, you can charge it. But having power sent to your laptop anywhere in your home is still a pipe dream. Sending power from a generating station to a dozen homes without wire is even more fantastic. Or is it? [Paul Jaffe] of the Naval Research Laboratory thinks it isn’t fantastic at all and he explains why in a post on IEEE Spectrum.

Historically, there have been attempts to move lots of power around wirelessly. In 1975, researchers sent power across a lab using microwaves at 50% efficiency. They were actually making the case for beaming energy down from solar power satellites. According to [Jaffe], the secret is to go beyond even microwaves. A 2019 demonstration by the Navy conveyed 400 watts over 300 meters using a laser. Using a tightly confined beam on a single coherent wavelength allows for very efficient photovoltaic cells that can far outstrip the kind we are used to that accept a mix of solar lighting.

Wait. The Navy. High-powered laser beams. Uh oh, right? According to [Jaffe], it is all a factor of how dense the energy in the beam is, along with the actual wavelengths involved. The 400-watt beam, for example, was in a virtual enclosure that could sense any object approaching the main beam and cut power.

Keep in mind that 400 watts isn’t enough to power a hair dryer. Besides, point-to-point transmission with a laser is fine for sending power to a far-flung community but not great for keeping your laptop charged no matter where you leave it.

Still, this sounds like exciting work. While it might not be Tesla’s exact vision, laser transmission might be closer than it seemed just a few years ago. We’ve seen similar systems that employ safety sensors, but they are all relatively low-power. We still want to know what’s going on in Milford, Texas, though.

EV Charging Connectors Come In Many Shapes And Sizes

Electric vehicles are now commonplace on our roads, and charging infrastructure is being built out across the world to serve them. It’s the electric equivalent of the gas station, and soon enough, they’re going to be everywhere.

However, it raises an interesting problem. Gas pumps simply pour a liquid into a hole, and have been largely standardized for quite some time. That’s not quite the case in the world of EV chargers, so let’s dive in and check out the current state of play.

AC, DC, Fast, or Slow?

Since becoming more mainstream over the past decade or so, EV technology has undergone rapid development. With most EVs still somewhat limited in range, automakers have developed ever-faster charging vehicles over the years to improve practicality. This has come through improvements to batteries, controller hardware, and software. Charging tech has evolved to the point where the latest EVs can now add hundreds of miles of range in under 20 minutes.

However, charging EVs at this pace requires huge amounts of power. Thus, automakers and industry groups have worked to develop new charging standards that can deliver high current to top vehicle batteries off as quickly as possible.

As a guide, a typical home outlet in the US can deliver 1.8 kW of power. It would take an excruciating 48 hours or more to charge a modern EV from a home socket like this.

In contrast, modern EV charge ports can carry anywhere from 2 kW up to 350 kW in some cases, and require highly specialized connectors to do so. Various standards have come about over the years as automakers look to pump more electricity into a vehicle at greater speed. Let’s take a look at the most common options out in the wild today. Continue reading “EV Charging Connectors Come In Many Shapes And Sizes”

The State Of Play In Solid State Batteries

Electric vehicles are slowly but surely snatching market share from their combustion-engined forbearers. However, range and charging speed remain major sticking points for customers, and are a prime selling point for any modern EV. Battery technology is front and center when it comes to improving these numbers.

Solid-state batteries could mark a step-change in performance in these areas, and the race to get them to market is starting to heat up. Let’s take a look at the current state of play.

Continue reading “The State Of Play In Solid State Batteries”

Just In Case You Want To Charge Your Neighbor’s Tesla

Tesla vehicles have a charging port that is under a cover that only opens on command from a charging station. Well, maybe not only. [IfNotPike] reports that he was able to replay the 315MHz signal using a software defined radio and pop the port open on any Tesla he happened to be near.

Apparently, opening the charging port isn’t the end of the world since there isn’t much you can do with the charging port other than charging the car. At least, that we know of. If history shows anything, it is that anything you can get to will be exploited eventually.

Continue reading “Just In Case You Want To Charge Your Neighbor’s Tesla”

Hackaday Links Column Banner

Hackaday Links: February 6, 2022

Last week, the news was filled with stories of Jack Sweeney and his Twitter-bot that tracks the comings and goings of various billionaires in their private jets. This caught the attention of the billionaire-iest of them all, one Elon Musk, who took exception to the 19-year-old’s feat of data integration, which draws from a number of public databases to infer the location of Elon’s plane. After Jack wisely laughed off Elon’s measly offer of $5,000 to take the bot down, Elon ghosted him — pretty childish behavior for the richest man on the planet, we have to say. But Jack might just have the last laugh, as an Orlando-based private jet chartering company has now offered him a job. Seems like his Twitter-bot and the resulting kerfuffle is a real resume builder, so job-seekers should take note.

Here’s hoping that you have a better retirement plan than NASA. The space agency announced its end-of-life plans for the International Space Station this week, the details of which will just be a run-up to the 2031 de-orbit and crash landing of any remaining debris into the lonely waters of Point Nemo. The agency apparently sees the increasingly political handwriting on the ISS’s aging and sometimes perforated walls, and acknowledges that the next phase of LEO space research will be carried out by a fleet of commercial space stations, none of which is close to existing yet. Politics aside, we’d love to dig into the technical details of the plan, and see exactly what will be salvaged from the station before its fiery demise, if anything. The exact method of de-orbiting too would be interesting — seems like the station would need quite a bit of thrust to put on the brakes, and might need the help of a sacrificial spacecraft.

“You break it, you fix it,” is a philosophy that we Hackaday types are probably more comfortable with than the general public, who tend to leave repairs of broken gear to professionals. But that philosophy seems to be at the core of Google’s new Chromebook repair program for schools, which encourages students to fix the Chromebooks they’re breaking in record numbers these days. Google is providing guidance for schools on setting up complete Chromebook repair facilities, including physical layout of the shop, organization of workflows, and complete repair information for at least a couple of popular brands of the stripped-down laptops. Although the repairs are limited to module-level stuff, like swapping power supplies, we still love the sound of this. Here’s hoping that something like this can trigger an interest in electronics for students that would otherwise never think to open up something as complicated as a laptop.

Back in July, we took note of a disturbing report of an RTL-SDR enthusiast in Crimea who was arrested for treason, apparently based on his interest in tracking flights and otherwise monitoring the radio spectrum. Now, as things appear to be heating up in Ukraine again, our friends at RTL-SDR.com are renewing their warning to radio enthusiasts in the area that there may still be risks. Then as now, we have little interest in the politics of all this, but in light of the previous arrest, we’d say it pays to be careful with how some hobbies are perceived.

And finally, aside from the aforementioned flight-tracking dustup, it’s been a tough week for Elon and Tesla. Not only have 817,000 of the expensive electric vehicles been recalled over something as simple as a wonky seatbelt chime, but another 54,000 cars are also being recalled for a software bug that causes them to ignore stop signs in “Full Self-Driving” mode. We’re not sure if this video of this Tesla hell-ride has anything to do with that bug, but it sure illustrates the point that FSD isn’t really ready for prime time. Then again, as a former Boston resident, we can pretty safely say that what that Tesla was doing isn’t really that much different than the meat-based drivers there.